Towards Clinical Practice in CT-Based Pulmonary Disease Screening: An Efficient and Reliable Framework
- URL: http://arxiv.org/abs/2412.01525v3
- Date: Thu, 12 Jun 2025 06:50:04 GMT
- Title: Towards Clinical Practice in CT-Based Pulmonary Disease Screening: An Efficient and Reliable Framework
- Authors: Qian Shao, Bang Du, Kai Zhang, Yixuan Wu, Zepeng Li, Qiyuan Chen, Qianqian Tang, Jian Wu, Jintai Chen, Honghao Gao, Hongxia Xu,
- Abstract summary: Cluster-based Sub-Sampling (CSS) method efficiently selects a compact yet comprehensive subset of CT slices.<n>Hybrid Uncertainty Quantification (HUQ) mechanism assesses both Aleatoric Uncertainty (AU) and Epistemic Uncertainty (EU) with minimal computational overhead.
- Score: 16.98886836566185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models for pulmonary disease screening from Computed Tomography (CT) scans promise to alleviate the immense workload on radiologists. Still, their high computational cost, stemming from processing entire 3D volumes, remains a major barrier to widespread clinical adoption. Current sub-sampling techniques often compromise diagnostic integrity by introducing artifacts or discarding critical information. To overcome these limitations, we propose an Efficient and Reliable Framework (ERF) that fundamentally improves the practicality of automated CT analysis. Our framework introduces two core innovations: (1) A Cluster-based Sub-Sampling (CSS) method that efficiently selects a compact yet comprehensive subset of CT slices by optimizing for both representativeness and diversity. By integrating an efficient k-Nearest Neighbor (k-NN) search with an iterative refinement process, CSS bypasses the computational bottlenecks of previous methods while preserving vital diagnostic features. (2) A lightweight Hybrid Uncertainty Quantification (HUQ) mechanism, which uniquely assesses both Aleatoric Uncertainty (AU) and Epistemic Uncertainty (EU) with minimal computational overhead. By maximizing the discrepancy between auxiliary classifiers, HUQ provides a robust reliability score, which is crucial for building trust in automated systems operating on partial data. Validated on two public datasets with 2,654 CT volumes across diagnostic tasks for 3 pulmonary diseases, our proposed ERF achieves diagnostic performance comparable to the full-volume analysis (over 90% accuracy and recall) while reducing processing time by more than 60%. This work represents a significant step towards deploying fast, accurate, and trustworthy AI-powered screening tools in time-sensitive clinical settings.
Related papers
- SVD Based Least Squares for X-Ray Pneumonia Classification Using Deep Features [0.0]
We propose a Singular Value Decomposition-based Least Squares framework for pneumonia classification.<n>We employ a closed-form, non-iterative classification approach that ensures efficiency without compromising accuracy.<n> Experimental results demonstrate that SVD-LS achieves competitive performance while offering significantly reduced computational costs.
arXiv Detail & Related papers (2025-04-29T17:39:16Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
We present a novel approach that combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis.<n>Our findings illustrate significant advancements in the precision of segmentation and classification.<n>This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies.
arXiv Detail & Related papers (2025-02-23T23:28:47Z) - A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma [10.226976909997711]
HCC is the third leading cause of cancer-related mortality worldwide.<n>Recent advancements in AI technology offer promising solutions to bridge this gap.<n>HSQformer is a novel hybrid architecture that synergizes CNNs' local feature extraction with Vision Transformers' global contextual awareness.
arXiv Detail & Related papers (2025-02-06T04:17:02Z) - MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement [1.6355783973385114]
Multi-view perception knowledge-enhanced TansfoRmer (MvKeTR)<n>MVPA with view-aware attention is proposed to synthesize diagnostic information from multiple anatomical views effectively.<n>Cross-Modal Knowledge Enhancer (CMKE) is devised to retrieve the most similar reports based on the query volume.
arXiv Detail & Related papers (2024-11-27T12:58:23Z) - MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [17.838015589388014]
Pulmonary nodules are critical indicators for the early diagnosis of lung cancer.
Traditional CT imaging methods suffered from cumbersome procedures, low detection rates, and poor localization accuracy.
This paper proposes MSDet, a multiscale attention and receptive field network for detecting tiny pulmonary nodules.
arXiv Detail & Related papers (2024-09-21T06:08:23Z) - Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN [2.7699831151653305]
This study develops and evaluates novel deep learning architectures that offer fast, accurate, and cost-effective methods for automatic diagnosis of cardiac diseases.<n>We propose two innovative methodologies: first, a Multi-Branch Deep Convolutional Neural Network (MBDCN) that emulates human auditory processing by utilizing diverse convolutional filter sizes and power spectrum input for enhanced feature extraction.<n>Second, a Long Short-Term Memory-Convolutional Neural (LSCN) model that integrates LSTM blocks with MBDCN to improve time-domain feature extraction.
arXiv Detail & Related papers (2024-07-15T13:02:54Z) - Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate.
We developed a pipeline to detect bone lesions in CT volumes via a proxy segmentation task.
Our method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data.
arXiv Detail & Related papers (2024-01-31T21:05:34Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
Lung cancer is one of the deadliest diseases and the leading cause of illness and death.
The proposed method attains 18.32%, 27.20%, and 34.32% higher accuracy analyzed with existing method.
arXiv Detail & Related papers (2023-12-05T10:53:35Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
Suppression of thoracic bone shadows on chest X-rays (CXRs) has been indicated to improve the diagnosis of pulmonary disease.
Previous approaches can be categorized as unsupervised physical and supervised deep learning models.
We propose a generalizable yet efficient workflow of two stages: (1) training pairs generation with GT bone shadows eliminated in minimization by a physical model in spatially transformed gradient fields.
(2) fully supervised image denoising network training on stage-one datasets for fast rib removal on incoming CXRs.
arXiv Detail & Related papers (2023-02-19T23:47:02Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
arXiv Detail & Related papers (2022-04-30T01:19:00Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing.
In this work, we propose an efficient reinforcement learning(RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL.
The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset and two real-world medical image segmentation datasets.
arXiv Detail & Related papers (2022-03-12T04:11:42Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
We present an analysis of state-of-the-art automatic quality control (QC) approaches to estimate the certainty of their outputs.
We validated the most promising approaches on a brain image segmentation task identifying white matter hyperintensities (WMH) in magnetic resonance imaging data.
arXiv Detail & Related papers (2021-12-06T16:30:43Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
We propose the CT-SGAN model that generates large-scale 3D synthetic CT-scan volumes when trained on a small dataset of chest CT-scans.
We show that CT-SGAN can significantly improve lung detection accuracy by pre-training a nodule on a vast amount of synthetic data.
arXiv Detail & Related papers (2021-10-14T22:20:40Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.