論文の概要: Unifying AMP Algorithms for Rotationally-Invariant Models
- arxiv url: http://arxiv.org/abs/2412.01574v1
- Date: Mon, 02 Dec 2024 14:56:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:40:36.500316
- Title: Unifying AMP Algorithms for Rotationally-Invariant Models
- Title(参考訳): 回転不変モデルのためのAMPアルゴリズムの統一
- Authors: Songbin Liu, Junjie Ma,
- Abstract要約: 本稿では、回転不変モデルのための近似メッセージパッシング(AMP)アルゴリズムを構築するための統一的なフレームワークを提案する。
一般的な反復型アルゴリズムテンプレートを使用し、それを長期記憶型オルソゴンAMP(OAMP)に還元することにより、AMPアルゴリズムの正しいオンサーガー項を体系的に導出する。
- 参考スコア(独自算出の注目度): 8.133739801185271
- License:
- Abstract: This paper presents a unified framework for constructing Approximate Message Passing (AMP) algorithms for rotationally-invariant models. By employing a general iterative algorithm template and reducing it to long-memory Orthogonal AMP (OAMP), we systematically derive the correct Onsager terms of AMP algorithms. This approach allows us to rederive an AMP algorithm introduced by Fan and Opper et al., while shedding new light on the role of free cumulants of the spectral law. The free cumulants arise naturally from a recursive centering operation, potentially of independent interest beyond the scope of AMP. To illustrate the flexibility of our framework, we introduce two novel AMP variants and apply them to estimation in spiked models.
- Abstract(参考訳): 本稿では、回転不変モデルのための近似メッセージパッシング(AMP)アルゴリズムを構築するための統一的なフレームワークを提案する。
一般的な反復型アルゴリズムテンプレートを使用し、それを長期記憶型オルソゴンAMP(OAMP)に還元することにより、AMPアルゴリズムの正しいオンサーガー項を体系的に導出する。
このアプローチにより、ファンとオッパーらが導入したAMPアルゴリズムを改良し、スペクトル法における自由累積物質の役割に新たな光を当てることが可能となる。
自由累積体は自然に再帰的な中心的作用から生じ、AMPの範囲を超えて独立した関心を持つ可能性がある。
フレームワークの柔軟性を説明するために、2つの新しいAMP変種を導入し、スパイクモデルにおける推定に適用する。
関連論文リスト
- Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Approximate Message Passing for Multi-Layer Estimation in Rotationally
Invariant Models [15.605031496980775]
我々は、AMPアルゴリズムのクラスを新たに提案し、状態の進化を再現する。
以上の結果から,この複雑性の増大はアルゴリズムの性能においてほとんど,あるいは全くコストがかからないことが示唆された。
論文 参考訳(メタデータ) (2022-12-03T08:10:35Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - A Non-Asymptotic Framework for Approximate Message Passing in Spiked
Models [24.786030482013437]
近似メッセージパッシング(AMP)は高次元統計問題を解くための効果的な反復パラダイムとして現れる。
それまでのAMP理論は、反復の数が$obig(fraclog nloglog nbig)$を超えると、AMP力学を予測できなかった。
本稿では,スパイク行列推定におけるAMP理解のための非漸近的枠組みを開発する。
論文 参考訳(メタデータ) (2022-08-05T17:59:06Z) - Estimation in Rotationally Invariant Generalized Linear Models via
Approximate Message Passing [21.871513580418604]
本稿では,信号推定のための近接メッセージパッシング(AMP)アルゴリズムの新たなファミリーを提案する。
我々は、状態進化再帰を通じて高次元の限界におけるそれらの性能を厳格に特徴づける。
論文 参考訳(メタデータ) (2021-12-08T15:20:04Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Approximate Message Passing with Spectral Initialization for Generalized
Linear Models [35.618694363241744]
我々は、近似メッセージパッシング(AMP)に基づく推定器に焦点を当てる。
スペクトル推定器を用いたAMPアルゴリズムを提案する。
また,提案手法の有効性を示す数値的な結果も提供する。
論文 参考訳(メタデータ) (2020-10-07T14:52:35Z) - Rigorous State Evolution Analysis for Approximate Message Passing with
Side Information [15.90775344965397]
サイド情報をAMP-SI(Adroximate Message Passing with Side Information)に組み込んだ新しいフレームワークが導入された。
信号とSIペアの間に統計的依存関係がある場合、AMP-SIに対して厳密な性能保証を提供する。
AMP-SI平均二乗誤差を精度良く予測できることを示す。
論文 参考訳(メタデータ) (2020-03-25T16:11:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。