論文の概要: The use of large language models to enhance cancer clinical trial educational materials
- arxiv url: http://arxiv.org/abs/2412.01955v2
- Date: Wed, 04 Dec 2024 02:25:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 11:47:20.774964
- Title: The use of large language models to enhance cancer clinical trial educational materials
- Title(参考訳): がん臨床治験教材の拡充における大規模言語モデルの利用
- Authors: Mingye Gao, Aman Varshney, Shan Chen, Vikram Goddla, Jack Gallifant, Patrick Doyle, Claire Novack, Maeve Dillon-Martin, Teresia Perkins, Xinrong Correia, Erik Duhaime, Howard Isenstein, Elad Sharon, Lisa Soleymani Lehmann, David Kozono, Brian Anthony, Dmitriy Dligach, Danielle S. Bitterman,
- Abstract要約: GPT4の生成した試用サマリーは読みやすく、包括的であった。
複数選択質問は、クラウドソースアノテータと高い精度と一致を示した。
両方のリソースタイプに対して、継続する人間の監視を必要とする幻覚が同定された。
- 参考スコア(独自算出の注目度): 2.680807601066252
- License:
- Abstract: Cancer clinical trials often face challenges in recruitment and engagement due to a lack of participant-facing informational and educational resources. This study investigated the potential of Large Language Models (LLMs), specifically GPT4, in generating patient-friendly educational content from clinical trial informed consent forms. Using data from ClinicalTrials.gov, we employed zero-shot learning for creating trial summaries and one-shot learning for developing multiple-choice questions, evaluating their effectiveness through patient surveys and crowdsourced annotation. Results showed that GPT4-generated summaries were both readable and comprehensive, and may improve patients' understanding and interest in clinical trials. The multiple-choice questions demonstrated high accuracy and agreement with crowdsourced annotators. For both resource types, hallucinations were identified that require ongoing human oversight. The findings demonstrate the potential of LLMs "out-of-the-box" to support the generation of clinical trial education materials with minimal trial-specific engineering, but implementation with a human-in-the-loop is still needed to avoid misinformation risks.
- Abstract(参考訳): がん臨床試験は、参加者が直面する情報や教育資源が不足しているため、採用や関与の難しさに直面することが多い。
本研究は,大規模言語モデル(LLM),特にGPT4が臨床治験の同意書から患者フレンドリな教育内容を生成する可能性について検討した。
ClinicalTrials.govのデータを用いて, 患者調査とクラウドソースアノテーションを用いて, ゼロショット学習を用いて, 試行要約とワンショット学習を用いて, 複数選択質問の作成を行い, 有効性を評価した。
その結果, GPT4産生サマリーは読みやすく, 包括的であり, 臨床治験に対する患者の理解と関心を高める可能性が示唆された。
複数項目の質問は、クラウドソースアノテータと高い精度と一致を示した。
両方のリソースタイプに対して、継続する人間の監視を必要とする幻覚が同定された。
この結果から, 臨床試験用教材を最小限の試験特化技術で作成する上で, LLMの「アウト・オブ・ザ・ボックス(out-of-the-box)」の可能性が示された。
関連論文リスト
- TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - PRISM: Patient Records Interpretation for Semantic Clinical Trial Matching using Large Language Models [4.438101430231511]
本報告では,実世界のERHを用いた臨床治験の大規模評価について述べる。
本研究は, LLMsが適切な臨床試験で患者に正確に適合する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-23T22:33:19Z) - Impact of Large Language Model Assistance on Patients Reading Clinical Notes: A Mixed-Methods Study [46.5728291706842]
臨床記録をより読みやすくするために,大言語モデル(LLM)を用いた患者対応ツールを開発した。
乳がんの既往歴のある患者から寄贈された臨床記録と臨床医からの合成ノートを用いて,本ツールの試験を行った。
論文 参考訳(メタデータ) (2024-01-17T23:14:52Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - CohortGPT: An Enhanced GPT for Participant Recruitment in Clinical Study [17.96401880059829]
ChatGPTのような大規模言語モデル(LLM)は、様々な下流タスクで大きな成功を収めています。
我々は,知識グラフを補助情報として,予測を行う際のLCMを導くことを提案する。
本手法は, 微調整手法と比較して, 良好な性能が得られる。
論文 参考訳(メタデータ) (2023-07-21T04:43:00Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。