Enhancing Deep Learning Model Robustness through Metamorphic Re-Training
- URL: http://arxiv.org/abs/2412.01958v1
- Date: Mon, 02 Dec 2024 20:38:03 GMT
- Title: Enhancing Deep Learning Model Robustness through Metamorphic Re-Training
- Authors: Said Togru, Youssef Sameh Mostafa, Karim Lotfy,
- Abstract summary: We propose a Metamorphic Retraining Framework, which applies metamorphic relations to data.
The framework integrates multiple semi-supervised retraining algorithms, including FixMatch, FlexMatch, MixMatch, and FullMatch.
Our results show that each model witnessed an additional flat 17 percent on average in our robustness metric.
- Score: 0.0
- License:
- Abstract: This paper evaluates the use of metamorphic relations to enhance the robustness and real-world performance of machine learning models. We propose a Metamorphic Retraining Framework, which applies metamorphic relations to data and utilizes semi-supervised learning algorithms in an iterative and adaptive multi-cycle process. The framework integrates multiple semi-supervised retraining algorithms, including FixMatch, FlexMatch, MixMatch, and FullMatch, to automate the retraining, evaluation, and testing of models with specified configurations. To assess the effectiveness of this approach, we conducted experiments on CIFAR-10, CIFAR-100, and MNIST datasets using a variety of image processing models, both pretrained and non-pretrained. Our results demonstrate the potential of metamorphic retraining to significantly improve model robustness as we show in our results that each model witnessed an increase of an additional flat 17 percent on average in our robustness metric.
Related papers
- EnsIR: An Ensemble Algorithm for Image Restoration via Gaussian Mixture Models [70.60381055741391]
Image restoration challenges related to illposed problems, resulting in deviations between single model predictions and ground-truths.
Ensemble learning aims to address these deviations by combining the predictions of multiple base models.
We employ an expectation (EM)-based algorithm to estimate ensemble weights for prediction candidates.
Our algorithm is model-agnostic and training-free, allowing seamless integration and enhancement of various pre-trained image restoration models.
arXiv Detail & Related papers (2024-10-30T12:16:35Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - Training Experimentally Robust and Interpretable Binarized Regression
Models Using Mixed-Integer Programming [3.179831861897336]
We present a model-based approach to training robust and interpretable binarized regression models for multiclass classification tasks.
Our MIP model balances the optimization of prediction margin and model size by using a weighted objective.
We show the effectiveness of training robust and interpretable binarized regression models using MIP.
arXiv Detail & Related papers (2021-12-01T11:53:08Z) - Improving Differentiable Architecture Search with a Generative Model [10.618008515822483]
We introduce a training strategy called Differentiable Architecture Search with a Generative Model(DASGM)"
In DASGM, the training set is used to update the classification model weight, while a synthesized dataset is used to train its architecture.
The generated images have different distributions from the training set, which can help the classification model learn better features to identify its weakness.
arXiv Detail & Related papers (2021-11-30T23:28:02Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
We present a non-autoregressive generation model based on pre-trained transformer models.
We propose a simple and effective iterative training method called MIx Source and pseudo Target.
Our experiments on three generation benchmarks including question generation, summarization and paraphrase generation, show that the proposed framework achieves the new state-of-the-art results.
arXiv Detail & Related papers (2021-10-21T13:04:21Z) - Ensemble Learning-Based Approach for Improving Generalization Capability
of Machine Reading Comprehension Systems [0.7614628596146599]
Machine Reading (MRC) is an active field in natural language processing with many successful developed models in recent years.
Despite their high in-distribution accuracy, these models suffer from two issues: high training cost and low out-of-distribution accuracy.
In this paper, we investigate the effect of ensemble learning approach to improve generalization of MRC systems without retraining a big model.
arXiv Detail & Related papers (2021-07-01T11:11:17Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.