MPBD-LSTM: A Predictive Model for Colorectal Liver Metastases Using Time Series Multi-phase Contrast-Enhanced CT Scans
- URL: http://arxiv.org/abs/2412.01973v1
- Date: Mon, 02 Dec 2024 21:02:11 GMT
- Title: MPBD-LSTM: A Predictive Model for Colorectal Liver Metastases Using Time Series Multi-phase Contrast-Enhanced CT Scans
- Authors: Xueyang Li, Han Xiao, Weixiang Weng, Xiaowei Xu, Yiyu Shi,
- Abstract summary: We build upon state-of-the-art deep learning techniques to evaluate how to best predict colorectal cancer liver metastasis.
Our experimental results show that a multi-plane architecture based on 3D bi-directional LSTM, which we call MPBD-LSTM, works best.
- Score: 8.437136847051546
- License:
- Abstract: Colorectal cancer is a prevalent form of cancer, and many patients develop colorectal cancer liver metastasis (CRLM) as a result. Early detection of CRLM is critical for improving survival rates. Radiologists usually rely on a series of multi-phase contrast-enhanced computed tomography (CECT) scans done during follow-up visits to perform early detection of the potential CRLM. These scans form unique five-dimensional data (time, phase, and axial, sagittal, and coronal planes in 3D CT). Most of the existing deep learning models can readily handle four-dimensional data (e.g., time-series 3D CT images) and it is not clear how well they can be extended to handle the additional dimension of phase. In this paper, we build a dataset of time-series CECT scans to aid in the early diagnosis of CRLM, and build upon state-of-the-art deep learning techniques to evaluate how to best predict CRLM. Our experimental results show that a multi-plane architecture based on 3D bi-directional LSTM, which we call MPBD-LSTM, works best, achieving an area under curve (AUC) of 0.79. On the other hand, analysis of the results shows that there is still great room for further improvement.
Related papers
- 4D VQ-GAN: Synthesising Medical Scans at Any Time Point for Personalised Disease Progression Modelling of Idiopathic Pulmonary Fibrosis [5.926086195644801]
We propose 4D Vector Quantised Generative Adversarial Networks (4D-VQ-GAN), a model capable of generating realistic CT volumes of IPF patients.
We evaluate different configurations of our model for generating longitudinal CT scans and compare the results against ground truth data.
arXiv Detail & Related papers (2025-02-08T22:25:53Z) - MEDFORM: A Foundation Model for Contrastive Learning of CT Imaging and Clinical Numeric Data in Multi-Cancer Analysis [0.562479170374811]
We propose MEDFORM, a multimodal pre-training strategy that guides CT image representation learning.
MEDFORM efficiently processes CT slice through multiple instance learning (MIL) and adopts a dual pre-training strategy.
Our model was pre-trained on three different cancer types: lung cancer (141,171 slices), breast cancer (8,100 slices), colorectal cancer (10,393 slices)
arXiv Detail & Related papers (2025-01-22T23:56:37Z) - A CNN-Transformer for Classification of Longitudinal 3D MRI Images -- A Case Study on Hepatocellular Carcinoma Prediction [0.0]
HCCNet is a novel model architecture that integrates a 3D adaptation of the ConvNeXt CNN architecture with a Transformer encoder.
Our results show that HCCNet significantly improves predictive accuracy and reliability over baseline models.
arXiv Detail & Related papers (2025-01-18T11:39:46Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
preoperative discrimination between T2 and T3 stages is arguably both the most challenging and clinically significant task for rectal cancer treatment.
We present a volumetric convolutional neural network to accurately discriminate T2 from T3 stage rectal cancer with rectal MR volumes.
arXiv Detail & Related papers (2022-09-13T07:10:14Z) - Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction
of Lung Nodules on CT Scans [13.882367716329387]
In the management of lung nodules, we are desirable to predict evolution in terms of its diameter variation on Computed Tomography (CT) scans.
In order to improve the performance of growth trend prediction for lung nodules, it is vital to compare the changes of the same nodule in consecutive CT scans.
arXiv Detail & Related papers (2022-06-07T06:44:56Z) - Enhancing Cancer Prediction in Challenging Screen-Detected Incident Lung
Nodules Using Time-Series Deep Learning [2.744770849264355]
Lung cancer screening (LCS) using annual low-dose computed tomography (CT) scanning has been proven to significantly reduce lung cancer mortality.
Improving risk stratification of malignancy risk in lung nodules can be enhanced using machine/deep learning algorithms.
Here we show the performance of our time-series deep learning model (DeepCAD-NLM-L) which integrates multi-model information across three longitudinal data domains.
arXiv Detail & Related papers (2022-03-30T18:40:36Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers among the population.
Multiple phases provide more information than single phase, but they are unaligned and inhomogeneous in texture.
We suggest an ensemble of all these alignments as a promising way to boost the performance of PDAC detection.
arXiv Detail & Related papers (2020-03-18T19:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.