Hamiltonian characterisation of multi-time processes with classical memory
- URL: http://arxiv.org/abs/2412.01998v1
- Date: Mon, 02 Dec 2024 22:06:34 GMT
- Title: Hamiltonian characterisation of multi-time processes with classical memory
- Authors: Kaumudibikash Goswami, Abhinash Kumar Roy, Varun Srivastava, Barr Perez, Christina Giarmatzi, Alexei Gilchrist, Fabio Costa,
- Abstract summary: A central problem in the study of open quantum systems is the characterisation of non-Markovian processes.
We show that general time-dependent Hamiltonians with product eigenstates always produce a particular type of classical memory.
We also show that the most general type of classical-memory processes can be generated by a quantum circuit.
- Score: 0.29316801942271303
- License:
- Abstract: A central problem in the study of open quantum systems is the characterisation of non-Markovian processes, where an environment retains memory of its interaction with the system. A key distinction is whether or not this memory can be simulated classically, as this can lead to efficient modelling and noise mitigation. Powerful tools have been developed recently within the process matrix formalism, a framework that conveniently characterises all multi-time correlations through a sequence of measurements. This leads to a detailed classification of classical and quantum-memory processes and provides operational procedures to distinguish between them. However, these results leave open the question of what type of system-environment interactions lead to classical memory. More generally, process-matrix methods lack a direct connection to joint system-environment evolution, a cornerstone of open-system modelling. In this work, we characterise Hamiltonian and circuit-based models of system-environment interactions leading to classical memory. We show that general time-dependent Hamiltonians with product eigenstates, and where the environment's eigenstates form a time-independent, orthonormal basis, always produce a particular type of classical memory: probabilistic mixtures of unitary processes. Additionally, we show that the most general type of classical-memory processes can be generated by a quantum circuit in which system and environment interact through a specific class of controlled unitaries. Our results establish the first strong link between process-matrix methods and traditional Hamiltonian-based approaches to open quantum systems.
Related papers
- Entropic witness for quantum memory in open system dynamics [0.0]
We present a tractable criterion for quantum memory based on the von Neumann entropy.
We demonstrate that this criterion is also suitable for detecting quantum memory in continuous-dimensional systems.
arXiv Detail & Related papers (2025-01-29T13:47:16Z) - Theoretical framework for quantum associative memories [0.8437187555622164]
Associative memory refers to the ability to relate a memory with an input and targets the restoration of corrupted patterns.
We develop a comprehensive framework for a quantum associative memory based on open quantum system dynamics.
arXiv Detail & Related papers (2024-08-26T13:46:47Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
This paper develops a formal framework for describing hybrid algorithms in terms of string diagrams.
A notable feature of our string diagrams is the use of functor boxes, which correspond to a quantum-classical interfaces.
arXiv Detail & Related papers (2024-07-04T06:37:16Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Characterising the Hierarchy of Multi-time Quantum Processes with Classical Memory [1.3749490831384266]
We study multi-time quantum processes with memory mechanisms that transmit only classical information forward in time.
We also study two related processes that could also be considered to have classical memory from a structural perspective.
arXiv Detail & Related papers (2023-07-21T21:08:08Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - Implementing quantum dimensionality reduction for non-Markovian
stochastic simulation [0.5269923665485903]
We implement memory-efficient quantum models for a family of non-Markovian processes using a photonic setup.
We show that with a single qubit of memory our implemented quantum models can attain higher precision than possible with any classical model of the same memory dimension.
arXiv Detail & Related papers (2022-08-26T15:54:47Z) - Unitary Evolutions Sourced By Interacting Quantum Memories: Closed
Quantum Systems Directing Themselves Using Their State Histories [0.0]
We show that momentary choices of the system's memories interact in order to source the internal interactions and unitary time evolutions of the system.
In a closed system of the kind, the unitary evolution operator is updated, moment by moment, by being remade out of the system's experience', that is, its quantum state history.
arXiv Detail & Related papers (2022-01-14T18:05:08Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.