Let's Think Var-by-Var: Large Language Models Enable Ad Hoc Probabilistic Reasoning
- URL: http://arxiv.org/abs/2412.02081v1
- Date: Tue, 03 Dec 2024 01:53:06 GMT
- Title: Let's Think Var-by-Var: Large Language Models Enable Ad Hoc Probabilistic Reasoning
- Authors: Shepard Xia, Brian Lu, Jason Eisner,
- Abstract summary: We propose to extract common sense from large language models (LLMs)<n>We focus our investigation on $textitguesstimation$ questions such as "How much are Airbnb listings in Newark, NJ?"<n>Our framework answers such a question by an $textitad hoc$ probabilistic model.
- Score: 15.568698101627088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A hallmark of intelligence is the ability to flesh out underspecified situations using "common sense." We propose to extract that common sense from large language models (LLMs), in a form that can feed into probabilistic inference. We focus our investigation on $\textit{guesstimation}$ questions such as "How much are Airbnb listings in Newark, NJ?" Formulating a sensible answer without access to data requires drawing on, and integrating, bits of common knowledge about how $\texttt{Price}$ and $\texttt{Location}$ may relate to other variables, such as $\texttt{Property Type}$. Our framework answers such a question by synthesizing an $\textit{ad hoc}$ probabilistic model. First we prompt an LLM to propose a set of random variables relevant to the question, followed by moment constraints on their joint distribution. We then optimize the joint distribution $p$ within a log-linear family to maximize the overall constraint satisfaction. Our experiments show that LLMs can successfully be prompted to propose reasonable variables, and while the proposed numerical constraints can be noisy, jointly optimizing for their satisfaction reconciles them. When evaluated on probabilistic questions derived from three real-world tabular datasets, we find that our framework performs comparably to a direct prompting baseline in terms of total variation distance from the dataset distribution, and is similarly robust to noise.
Related papers
- Regression-Based Estimation of Causal Effects in the Presence of Selection Bias and Confounding [52.1068936424622]
We consider the problem of estimating the expected causal effect $E[Y|do(X)]$ for a target variable $Y$ when treatment $X$ is set by intervention.<n>In settings without selection bias or confounding, $E[Y|do(X)] = E[Y|X]$, which can be estimated using standard regression methods.<n>We propose a framework that incorporates both selection bias and confounding.
arXiv Detail & Related papers (2025-03-26T13:43:37Z) - Identifying General Mechanism Shifts in Linear Causal Representations [58.6238439611389]
We consider the linear causal representation learning setting where we observe a linear mixing of $d$ unknown latent factors.
Recent work has shown that it is possible to recover the latent factors as well as the underlying structural causal model over them.
We provide a surprising identifiability result that it is indeed possible, under some very mild standard assumptions, to identify the set of shifted nodes.
arXiv Detail & Related papers (2024-10-31T15:56:50Z) - FLARE: Faithful Logic-Aided Reasoning and Exploration [50.9814063216852]
We introduce a novel approach for traversing the problem space using task decompositions.
We use the Large Language Models to plan a solution, soft-formalise the query into facts and predicates using a logic programming code.
Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers.
arXiv Detail & Related papers (2024-10-14T19:39:11Z) - QUITE: Quantifying Uncertainty in Natural Language Text in Bayesian Reasoning Scenarios [15.193544498311603]
We present QUITE, a dataset of real-world Bayesian reasoning scenarios with categorical random variables and complex relationships.
We conduct an extensive set of experiments, finding that logic-based models outperform out-of-the-box large language models on all reasoning types.
Our results provide evidence that neuro-symbolic models are a promising direction for improving complex reasoning.
arXiv Detail & Related papers (2024-10-14T12:44:59Z) - Random pairing MLE for estimation of item parameters in Rasch model [22.32547146723177]
Rasch model is widely used in psychometrics to model the relationship between individuals' latent traits and their binary responses.
We introduce a new likelihood-based estimator that faithfully estimates the item parameters in the Rasch model.
We provide empirical evidence of the efficacy of the two new estimators using both simulated and real data.
arXiv Detail & Related papers (2024-06-20T04:32:34Z) - Invariant Causal Prediction with Local Models [52.161513027831646]
We consider the task of identifying the causal parents of a target variable among a set of candidates from observational data.
We introduce a practical method called L-ICP ($textbfL$ocalized $textbfI$nvariant $textbfCa$usal $textbfP$rediction), which is based on a hypothesis test for parent identification using a ratio of minimum and maximum statistics.
arXiv Detail & Related papers (2024-01-10T15:34:42Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - Sparse Gaussian Graphical Models with Discrete Optimization:
Computational and Statistical Perspectives [8.403841349300103]
We consider the problem of learning a sparse graph underlying an undirected Gaussian graphical model.
We propose GraphL0BnB, a new estimator based on an $ell_0$-penalized version of the pseudolikelihood function.
Our numerical experiments on real/synthetic datasets suggest that our method can solve, to near-optimality, problem instances with $p = 104$.
arXiv Detail & Related papers (2023-07-18T15:49:02Z) - A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive
Noise Models [49.038420266408586]
We show that sorting variables by increasing variance often yields an ordering close to a causal order.
We propose an efficient baseline algorithm termed $R2$-SortnRegress that exploits high $R2$-sortability.
Our findings reveal high $R2$-sortability as an assumption about the data generating process relevant to causal discovery.
arXiv Detail & Related papers (2023-03-31T17:05:46Z) - Estimating Optimal Policy Value in General Linear Contextual Bandits [50.008542459050155]
In many bandit problems, the maximal reward achievable by a policy is often unknown in advance.
We consider the problem of estimating the optimal policy value in the sublinear data regime before the optimal policy is even learnable.
We present a more practical, computationally efficient algorithm that estimates a problem-dependent upper bound on $V*$.
arXiv Detail & Related papers (2023-02-19T01:09:24Z) - Uncertainty Quantification of MLE for Entity Ranking with Covariates [3.2839905453386162]
This paper concerns with statistical estimation and inference for the ranking problems based on pairwise comparisons.
We propose a novel model, Co-Assisted Ranking Estimation (CARE) model, that extends the well-known Bradley-Terry-Luce (BTL) model.
We derive the maximum likelihood estimator of $alpha_i*_i=1n$ and $beta*$ under a sparse comparison graph.
We validate our theoretical results through large-scale numerical studies and an application to the mutual fund stock holding dataset.
arXiv Detail & Related papers (2022-12-20T02:28:27Z) - You can't pick your neighbors, or can you? When and how to rely on
retrieval in the $k$NN-LM [65.74934004876914]
Retrieval-enhanced language models (LMs) condition their predictions on text retrieved from large external datastores.
One such approach, the $k$NN-LM, interpolates any existing LM's predictions with the output of a $k$-nearest neighbors model.
We empirically measure the effectiveness of our approach on two English language modeling datasets.
arXiv Detail & Related papers (2022-10-28T02:57:40Z) - Causal Order Identification to Address Confounding: Binary Variables [4.56877715768796]
This paper considers an extension of the linear non-Gaussian acyclic model (LiNGAM)
LiNGAM determines the causal order among variables from a dataset when the variables are expressed by a set of linear equations, including noise.
arXiv Detail & Related papers (2021-08-10T22:09:43Z) - Iterative Feature Matching: Toward Provable Domain Generalization with
Logarithmic Environments [55.24895403089543]
Domain generalization aims at performing well on unseen test environments with data from a limited number of training environments.
We present a new algorithm based on performing iterative feature matching that is guaranteed with high probability to yield a predictor that generalizes after seeing only $O(logd_s)$ environments.
arXiv Detail & Related papers (2021-06-18T04:39:19Z) - Neural Bayes: A Generic Parameterization Method for Unsupervised
Representation Learning [175.34232468746245]
We introduce a parameterization method called Neural Bayes.
It allows computing statistical quantities that are in general difficult to compute.
We show two independent use cases for this parameterization.
arXiv Detail & Related papers (2020-02-20T22:28:53Z) - Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages [112.65994041398481]
We propose a Bayesian generative model for the space of neural parameters.
We infer the posteriors over such latent variables based on data from seen task-language combinations.
Our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods.
arXiv Detail & Related papers (2020-01-30T16:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.