Ptychographic estimation of pure multiqubit states in a quantum device
- URL: http://arxiv.org/abs/2412.02120v1
- Date: Tue, 03 Dec 2024 03:18:23 GMT
- Title: Ptychographic estimation of pure multiqubit states in a quantum device
- Authors: Warley M. S. Alves, Leonardo Neves,
- Abstract summary: Quantum ptychography is a method for estimating an unknown pure quantum state by subjecting it to overlapping projections.
We present a study of this method applied for estimating $n$-qubit states in a circuit-based quantum computer.
- Score: 8.74712236516413
- License:
- Abstract: Quantum ptychography is a method for estimating an unknown pure quantum state by subjecting it to overlapping projections, each one followed by a projective measurement on a single prescribed basis. Here, we present a comprehensive study of this method applied for estimating $n$-qubit states in a circuit-based quantum computer, including numerical simulations and experiments carried out on an IBM superconducting quantum processor. The intermediate projections are implemented through Pauli measurements on one qubit at a time, which sets the number of ptychographic circuits to $3n$ (in contrast to the $3^n$ circuits for standard Pauli tomography); the final projective measurement in the computational basis is preceded by the quantum Fourier transform (QFT). Due to the large depth and number of two-qubit gates of the QFT circuit, which is unsuitable for noisy devices, we also test the approximate QFT (AQFT) and separable unitary operations. Using the QFT and AQFT of degree $2$, we obtained high estimation fidelities in all tests with separable and entangled states for up to three and four qubits, respectively; on the other hand, the separable unitaries in this scenario provided good estimations only for separable states, in general. Our results compare favorably with recent results in the literature and we discuss further alternatives to make the ptychographic method scalable for the current noisy devices.
Related papers
- Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Reductive Quantum Phase Estimation [0.0]
We show a circuit that distinguishes an arbitrary set of phases with a fewer number of qubits and unitary applications.
We show a trade-off between measurement precision and phase distinguishability, which allows one to tune the circuit to be optimal for a specific application.
arXiv Detail & Related papers (2024-02-06T23:38:36Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - An Efficient Quantum Readout Error Mitigation for Sparse Measurement
Outcomes of Near-term Quantum Devices [7.9958720589619094]
We propose two efficient quantum readout error mitigation methods for quantum devices with tens of qubits and more.
The main targets of the proposed methods are the sparse probability distributions where only a few states are dominant.
The proposed methods can be applied to mitigate GHZ states up to 65 qubits on IBM Quantum devices within a few seconds to confirm the existence of a 29-qubit GHZ state with fidelity larger than 0.5.
arXiv Detail & Related papers (2022-01-26T16:42:03Z) - Benchmarking Amplitude Estimation on a Superconducting Quantum Computer [0.0]
Amplitude Estimation (AE) is a critical subroutine in many quantum algorithms.
Newer methods have reduced the number of operations required on a quantum computer.
It is necessary to continue to benchmark the algorithm's performance on current quantum computers.
arXiv Detail & Related papers (2022-01-18T13:49:40Z) - K-sparse Pure State Tomography with Phase Estimation [1.2183405753834557]
Quantum state tomography (QST) for reconstructing pure states requires exponentially increasing resources and measurements with the number of qubits.
QST reconstruction for any pure state composed of the superposition of $K$ different computational basis states of $n$bits in a specific measurement set-up is presented.
arXiv Detail & Related papers (2021-11-08T09:43:12Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Estimation of pure states using three measurement bases [0.0]
We introduce a new method to estimate unknown pure $d$-dimensional quantum states using the probability distributions associated with only three measurement bases.
The viability of the protocol is experimentally demonstrated using two different and complementary high-dimensional quantum information platforms.
arXiv Detail & Related papers (2020-06-05T03:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.