Benchmarking Amplitude Estimation on a Superconducting Quantum Computer
- URL: http://arxiv.org/abs/2201.06987v2
- Date: Thu, 27 Jan 2022 17:05:02 GMT
- Title: Benchmarking Amplitude Estimation on a Superconducting Quantum Computer
- Authors: Salvatore Certo, Anh Dung Pham, Daniel Beaulieu
- Abstract summary: Amplitude Estimation (AE) is a critical subroutine in many quantum algorithms.
Newer methods have reduced the number of operations required on a quantum computer.
It is necessary to continue to benchmark the algorithm's performance on current quantum computers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amplitude Estimation (AE) is a critical subroutine in many quantum
algorithms, allowing for a quadratic speedup in various applications like those
involving estimating statistics of various functions as in financial Monte
Carlo simulations. Much work has gone into devising methods to efficiently
estimate the amplitude of a quantum state without expensive operations like the
Quantum Fourier Transform (QFT), which is especially prohibitive given the
constraints of current NISQ devices. Newer methods have reduced the number of
operations required on a quantum computer and are the most promising near-term
implementations of the AE subroutine. While it remains to be seen the exact
circuit requirements for a quantum advantage in applications relying on AE, it
is necessary to continue to benchmark the algorithm's performance on current
quantum computers and the circuit costs associated with such subroutines.
Given these considerations, we expand on results from previous experiments in
using Maximum Likelihood Estimation (MLE) to approximate the amplitude of a
quantum state and provide empirical upper bounds on the current feasible
circuit depths for AE on a superconducting quantum computer. Our results show
that MLE using optimally-compiled circuits can currently outperform naive
sampling for up to 3 Grover Iterations with a circuit depth of 131, which is
higher than reported in other experimental results. This functional benchmark
is one of many that will be continually monitored against current quantum
hardware to measure the necessary progress towards quantum advantage.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
In principle, the encoding of the exponentially scaling many-electron wave function onto a linearly scaling qubit register offers a promising solution to overcome the limitations of traditional quantum chemistry methods.
An essential requirement for ground state quantum algorithms to be practical is the initialisation of the qubits to a high-quality approximation of the sought-after ground state.
Quantum State Preparation (QSP) allows the preparation of approximate eigenstates obtained from classical calculations, but it is frequently treated as an oracle in quantum information.
arXiv Detail & Related papers (2023-11-06T18:53:50Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Improved maximum-likelihood quantum amplitude estimation [0.0]
Quantum estimation is a key subroutine in a number of powerful quantum algorithms, including quantum-enhanced Monte Carlo simulation and quantum machine learning.
In this article, we deepen the analysis of Maximum-likelihood quantum amplitude estimation (MLQAE) to put the algorithm in a more prescriptive form, including scenarios where quantum circuit depth is limited.
We then propose and numerically validate a modification to the algorithm to overcome this problem, bringing the algorithm even closer to being useful as a practical subroutine on near- and mid-term quantum hardware.
arXiv Detail & Related papers (2022-09-07T17:30:37Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs)
We prove that for a broad class of such random circuits, the variation range of the cost function vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs.
arXiv Detail & Related papers (2022-05-10T17:14:57Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.