Recovering implicit physics model under real-world constraints
- URL: http://arxiv.org/abs/2412.02215v1
- Date: Tue, 03 Dec 2024 07:11:21 GMT
- Title: Recovering implicit physics model under real-world constraints
- Authors: Ayan Banerjee, Sandeep K. S. Gupta,
- Abstract summary: We propose a novel liquid time constant neural network (LTC-NN) based architecture to recover underlying model of physical dynamics from real-world data.
The LTC-NN architecture is more accurate in recovering implicit physics model coefficients than the state-of-the-art sparse model recovery approaches.
- Score: 6.2178318166123185
- License:
- Abstract: Recovering a physics-driven model, i.e. a governing set of equations of the underlying dynamical systems, from the real-world data has been of recent interest. Most existing methods either operate on simulation data with unrealistically high sampling rates or require explicit measurements of all system variables, which is not amenable in real-world deployments. Moreover, they assume the timestamps of external perturbations to the physical system are known a priori, without uncertainty, implicitly discounting any sensor time-synchronization or human reporting errors. In this paper, we propose a novel liquid time constant neural network (LTC-NN) based architecture to recover underlying model of physical dynamics from real-world data. The automatic differentiation property of LTC-NN nodes overcomes problems associated with low sampling rates, the input dependent time constant in the forward pass of the hidden layer of LTC-NN nodes creates a massive search space of implicit physical dynamics, the physics model solver based data reconstruction loss guides the search for the correct set of implicit dynamics, and the use of the dropout regularization in the dense layer ensures extraction of the sparsest model. Further, to account for the perturbation timing error, we utilize dense layer nodes to search through input shifts that results in the lowest reconstruction loss. Experiments on four benchmark dynamical systems, three with simulation data and one with the real-world data show that the LTC-NN architecture is more accurate in recovering implicit physics model coefficients than the state-of-the-art sparse model recovery approaches. We also introduce four additional case studies (total eight) on real-life medical examples in simulation and with real-world clinical data to show effectiveness of our approach in recovering underlying model in practice.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
We present S Identification of Dynamics with SHallow REcurrent Decoder networks (SINDy-SHRED), a method to jointly solve the sensing and model identification problems.
SINDy-SHRED uses Gated Recurrent Units (GRUs) to model the temporal sequence of sensor measurements along with shallow decoder network to reconstruct the full field from the latent state space.
We conduct a systematic experimental study including synthetic PDE data, real-world sensor measurements for sea surface temperature, and direct video data.
arXiv Detail & Related papers (2025-01-23T02:18:13Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
We develop a time-reduced-rank vector autoregression model whose coefficient are parameterized by low-rank tensor factorization.
In the temporal context, the complex time-varying system behaviors can be revealed by the temporal modes in the proposed model.
arXiv Detail & Related papers (2022-11-28T15:59:52Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
One of the major challenges is to infer the underlying causes, which generate the perceived data stream.
Success of machine learning based predictive models requires massive annotated data for model training.
Our experiments on both synthetic and real-world datasets exhibit that the proposed ST-PCNN with active learning converges to optimal accuracy with substantially fewer instances.
arXiv Detail & Related papers (2021-08-11T18:05:55Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.