Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering
- URL: http://arxiv.org/abs/2412.02292v1
- Date: Tue, 03 Dec 2024 09:08:27 GMT
- Title: Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering
- Authors: Yasser Khalafaoui, Basarab Matei, Martino Lovisetto, Nistor Grozavu,
- Abstract summary: We introduce a novel Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering (DMFAW)
Our method simultaneously incorporates feature selection and generates local partitions, enhancing clustering results.
Experiments on benchmark datasets highlight that DMFAW outperforms state-of-the-art methods in terms of clustering performance.
- Score: 0.6037276428689637
- License:
- Abstract: Recently, deep matrix factorization has been established as a powerful model for unsupervised tasks, achieving promising results, especially for multi-view clustering. However, existing methods often lack effective feature selection mechanisms and rely on empirical hyperparameter selection. To address these issues, we introduce a novel Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering (DMFAW). Our method simultaneously incorporates feature selection and generates local partitions, enhancing clustering results. Notably, the features weights are controlled and adjusted by a parameter that is dynamically updated using Control Theory inspired mechanism, which not only improves the model's stability and adaptability to diverse datasets but also accelerates convergence. A late fusion approach is then proposed to align the weighted local partitions with the consensus partition. Finally, the optimization problem is solved via an alternating optimization algorithm with theoretically guaranteed convergence. Extensive experiments on benchmark datasets highlight that DMFAW outperforms state-of-the-art methods in terms of clustering performance.
Related papers
- GeneralizeFormer: Layer-Adaptive Model Generation across Test-Time Distribution Shifts [58.95913531746308]
We consider the problem of test-time domain generalization, where a model is trained on several source domains and adjusted on target domains never seen during training.
We propose to generate multiple layer parameters on the fly during inference by a lightweight meta-learned transformer, which we call textitGeneralizeFormer.
arXiv Detail & Related papers (2025-02-15T10:10:49Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.
Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.
We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - AdaptiveMDL-GenClust: A Robust Clustering Framework Integrating Normalized Mutual Information and Evolutionary Algorithms [0.0]
We introduce a robust clustering framework that integrates the Minimum Description Length (MDL) principle with a genetic optimization algorithm.
The framework begins with an ensemble clustering approach to generate an initial clustering solution, which is refined using MDL-guided evaluation functions and optimized through a genetic algorithm.
Experimental results demonstrate that our approach consistently outperforms traditional clustering methods, yielding higher accuracy, improved stability, and reduced bias.
arXiv Detail & Related papers (2024-11-26T20:26:14Z) - Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
This paper focuses on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO)
In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation.
For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Tuning, and introduces a radius ( R ) concept in deterministic crowding.
arXiv Detail & Related papers (2024-11-12T15:18:48Z) - One-Step Late Fusion Multi-view Clustering with Compressed Subspace [29.02032034647922]
We propose an integrated framework named One-Step Late Fusion Multi-view Clustering with Compressed Subspace (OS-LFMVC-CS)
We use the consensus subspace to align the partition matrix while optimizing the partition fusion, and utilize the fused partition matrix to guide the learning of discrete labels.
arXiv Detail & Related papers (2024-01-03T06:18:30Z) - Lp-Norm Constrained One-Class Classifier Combination [18.27510863075184]
We consider the one-class classification problem by modelling the sparsity/uniformity of the ensemble.
We present an effective approach to solve formulated convex constrained problem efficiently.
arXiv Detail & Related papers (2023-12-25T16:32:34Z) - A distribution-free mixed-integer optimization approach to hierarchical modelling of clustered and longitudinal data [0.0]
We introduce an innovative algorithm that evaluates cluster effects for new data points, thereby increasing the robustness and precision of this model.
The inferential and predictive efficacy of this approach is further illustrated through its application in student scoring and protein expression.
arXiv Detail & Related papers (2023-02-06T23:34:51Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
We propose a family of algorithms for personalized federated learning with locally convex user costs.
The proposed framework is based on a generalization of convex clustering in which the differences between different users' models are penalized.
arXiv Detail & Related papers (2022-02-01T19:25:31Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.