論文の概要: Transformer-based Koopman Autoencoder for Linearizing Fisher's Equation
- arxiv url: http://arxiv.org/abs/2412.02430v1
- Date: Tue, 03 Dec 2024 12:52:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:40:44.874911
- Title: Transformer-based Koopman Autoencoder for Linearizing Fisher's Equation
- Title(参考訳): 変圧器を用いたフィッシャー方程式の線形化のためのクープマンオートエンコーダ
- Authors: Kanav Singh Rana, Nitu Kumari,
- Abstract要約: 線形フィッシャーの反応拡散方程式に対してトランスフォーマーに基づくクープマンオートエンコーダを提案する。
強調するのは、方程式を解くだけでなく、システムのダイナミクスをより理解しやすい形式に変換することだ。
提案したモデルの有効性を評価するために,複数のデータセットに対する広範囲な試験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A Transformer-based Koopman autoencoder is proposed for linearizing Fisher's reaction-diffusion equation. The primary focus of this study is on using deep learning techniques to find complex spatiotemporal patterns in the reaction-diffusion system. The emphasis is on not just solving the equation but also transforming the system's dynamics into a more comprehensible, linear form. Global coordinate transformations are achieved through the autoencoder, which learns to capture the underlying dynamics by training on a dataset with 60,000 initial conditions. Extensive testing on multiple datasets was used to assess the efficacy of the proposed model, demonstrating its ability to accurately predict the system's evolution as well as to generalize. We provide a thorough comparison study, comparing our suggested design to a few other comparable methods using experiments on various PDEs, such as the Kuramoto-Sivashinsky equation and the Burger's equation. Results show improved accuracy, highlighting the capabilities of the Transformer-based Koopman autoencoder. The proposed architecture in is significantly ahead of other architectures, in terms of solving different types of PDEs using a single architecture. Our method relies entirely on the data, without requiring any knowledge of the underlying equations. This makes it applicable to even the datasets where the governing equations are not known.
- Abstract(参考訳): フィッシャーの反応拡散方程式を線形化するためにトランスフォーマーベースのクープマンオートエンコーダを提案する。
本研究の主な焦点は、深層学習技術を用いて、反応拡散系における複雑な時空間パターンを見つけることである。
強調するのは、方程式を解くだけでなく、システムの力学をより理解しやすい線形形式に変換することである。
グローバル座標変換はオートエンコーダ(autoencoder)を通じて達成される。6万の初期条件を持つデータセット上でトレーニングすることで、基礎となるダイナミクスをキャプチャすることを学ぶ。
複数のデータセットに対する広範囲なテストは、提案したモデルの有効性を評価するために使用され、システムの進化を正確に予測し、一般化する能力を示した。
提案した設計法を,倉本-シヴァシンスキー方程式やバーガー方程式など様々なPDE実験を用いて比較した。
その結果、精度が向上し、Transformerベースのクープマンオートエンコーダの能力が強調された。
提案されたアーキテクチャは、異なるタイプのPDEを単一のアーキテクチャで解決するという点で、他のアーキテクチャよりもはるかに優れている。
我々の方法は、基礎となる方程式の知識を必要とせずに、データに完全に依存する。
これにより、支配方程式が知られていないデータセットにも適用できる。
関連論文リスト
- KAN/MultKAN with Physics-Informed Spline fitting (KAN-PISF) for ordinary/partial differential equation discovery of nonlinear dynamic systems [0.0]
動的システムの物理的理解を開発するためには、機械学習モデルを解釈する必要がある。
本研究では, (SRDD) アルゴリズムをデノナイズするための逐次正規化導関数を含む方程式発見フレームワークを提案し, 式構造を同定し, 関連する非線形関数を提案する。
論文 参考訳(メタデータ) (2024-11-18T18:14:51Z) - MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
科学的基礎モデル(SFM)にも同様のアプローチが適用できるかどうかを考察する。
数学辞書の任意の線形結合によって構築された偏微分方程式(PDE)の解の形で、低コストな物理情報ニューラルネットワーク(PINN)に基づく近似された事前データを収集する。
本研究では,1次元対流拡散反応方程式に関する実験的な証拠を提供する。
論文 参考訳(メタデータ) (2024-10-09T00:52:00Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
我々は、自己教師付き学習(SSL)のための共同埋め込み手法を実装することにより、PDEの汎用表現を学習する。
我々の表現は、PDEの係数の回帰などの不変タスクに対するベースラインアプローチよりも優れており、また、ニューラルソルバのタイムステッピング性能も向上している。
提案手法がPDEの汎用基盤モデルの開発に有効であることを期待する。
論文 参考訳(メタデータ) (2023-07-11T16:52:22Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
アダプティブと呼ばれるいくつかのODEソルバは、目の前の問題の複雑さに応じて評価戦略を適用することができる。
本稿では,動的システムモデリングのためのブラックボックスとして適応型ソルバをシームレスに利用できない理由を示すための簡単な実験について述べる。
論文 参考訳(メタデータ) (2022-11-13T17:48:04Z) - Identification of Dynamical Systems using Symbolic Regression [0.0]
本稿では,観測データから動的システムのモデルを特定する手法について述べる。
新しくなったのは、ODEパラメータの勾配に基づく最適化のステップを追加することです。
パラメータの勾配に基づく最適化はモデルの予測精度を向上させる。
論文 参考訳(メタデータ) (2021-07-06T11:41:10Z) - A Probabilistic State Space Model for Joint Inference from Differential
Equations and Data [23.449725313605835]
ベイズフィルタを用いて解過程を直接句する常微分方程式 (odes) の解法の新しいクラスを示す。
その後、拡張カルマンフィルタの単一の線形複雑化パスにおいて、潜力とODE溶液のベイズ推定を近似することができるようになる。
本研究では,covid-19流行データに基づく非パラメトリックsirdモデルを訓練することにより,アルゴリズムの表現力と性能を示す。
論文 参考訳(メタデータ) (2021-03-18T10:36:09Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
我々は、コア機械学習アーキテクチャを予測的符号化に翻訳する戦略を開発する。
私たちのモデルは、挑戦的な機械学習ベンチマークのバックプロップと同等に機能します。
本手法は,ニューラルネットワークに標準機械学習アルゴリズムを直接実装できる可能性を高める。
論文 参考訳(メタデータ) (2020-06-07T15:35:47Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。