OODFace: Benchmarking Robustness of Face Recognition under Common Corruptions and Appearance Variations
- URL: http://arxiv.org/abs/2412.02479v1
- Date: Tue, 03 Dec 2024 14:42:31 GMT
- Title: OODFace: Benchmarking Robustness of Face Recognition under Common Corruptions and Appearance Variations
- Authors: Caixin Kang, Yubo Chen, Shouwei Ruan, Shiji Zhao, Ruochen Zhang, Jiayi Wang, Shan Fu, Xingxing Wei,
- Abstract summary: Existing open-source models and commercial algorithms lack robustness in certain real-world Out-of-Distribution (OOD) scenarios.
We introduce OODFace, which explores the OOD challenges faced by facial recognition models from two perspectives.
We conduct extensive experiments on 19 different facial recognition models and 3 commercial APIs, along with extended experiments on face masks.
- Score: 21.00631818827379
- License:
- Abstract: With the rise of deep learning, facial recognition technology has seen extensive research and rapid development. Although facial recognition is considered a mature technology, we find that existing open-source models and commercial algorithms lack robustness in certain real-world Out-of-Distribution (OOD) scenarios, raising concerns about the reliability of these systems. In this paper, we introduce OODFace, which explores the OOD challenges faced by facial recognition models from two perspectives: common corruptions and appearance variations. We systematically design 30 OOD scenarios across 9 major categories tailored for facial recognition. By simulating these challenges on public datasets, we establish three robustness benchmarks: LFW-C/V, CFP-FP-C/V, and YTF-C/V. We then conduct extensive experiments on 19 different facial recognition models and 3 commercial APIs, along with extended experiments on face masks, Vision-Language Models (VLMs), and defense strategies to assess their robustness. Based on the results, we draw several key insights, highlighting the vulnerability of facial recognition systems to OOD data and suggesting possible solutions. Additionally, we offer a unified toolkit that includes all corruption and variation types, easily extendable to other datasets. We hope that our benchmarks and findings can provide guidance for future improvements in facial recognition model robustness.
Related papers
- Local Features Meet Stochastic Anonymization: Revolutionizing Privacy-Preserving Face Recognition for Black-Box Models [54.88064975480573]
The task of privacy-preserving face recognition (PPFR) currently faces two major unsolved challenges.
By disrupting global features while enhancing local features, we achieve effective recognition even in black-box environments.
Our method achieves an average recognition accuracy of 94.21% on black-box models, outperforming existing methods in both privacy protection and anti-reconstruction capabilities.
arXiv Detail & Related papers (2024-12-11T10:49:15Z) - Fairer Analysis and Demographically Balanced Face Generation for Fairer Face Verification [69.04239222633795]
Face recognition and verification are two computer vision tasks whose performances have advanced with the introduction of deep representations.
Ethical, legal, and technical challenges due to the sensitive nature of face data and biases in real-world training datasets hinder their development.
We introduce a new controlled generation pipeline that improves fairness.
arXiv Detail & Related papers (2024-12-04T14:30:19Z) - Generalized Face Liveness Detection via De-fake Face Generator [52.23271636362843]
Previous Face Anti-spoofing (FAS) methods face the challenge of generalizing to unseen domains.
We propose an Anomalous cue Guided FAS (AG-FAS) method, which can effectively leverage large-scale additional real faces.
Our method achieves state-of-the-art results under cross-domain evaluations with unseen scenarios and unknown presentation attacks.
arXiv Detail & Related papers (2024-01-17T06:59:32Z) - Analysis of Recent Trends in Face Recognition Systems [0.0]
Due to inter-class similarities and intra-class variations, face recognition systems generate false match and false non-match errors respectively.
Recent research focuses on improving the robustness of extracted features and the pre-processing algorithms to enhance recognition accuracy.
arXiv Detail & Related papers (2023-04-23T18:55:45Z) - Recognizability Embedding Enhancement for Very Low-Resolution Face
Recognition and Quality Estimation [21.423956631978186]
We study principled approaches to elevate the recognizability of a face in the embedding space instead of the visual quality.
We first formulate a robust learning-based face recognizability measure, namely recognizability index (RI)
We then devise an index diversion loss to push the hard-to-recognize face embedding with low RI away from unrecognizable faces cluster to boost the RI, which reflects better recognizability.
arXiv Detail & Related papers (2023-04-20T03:18:03Z) - My Face My Choice: Privacy Enhancing Deepfakes for Social Media
Anonymization [4.725675279167593]
We introduce three face access models in a hypothetical social network, where the user has the power to only appear in photos they approve.
Our approach eclipses current tagging systems and replaces unapproved faces with quantitatively dissimilar deepfakes.
Running seven SOTA face recognizers on our results, MFMC reduces the average accuracy by 61%.
arXiv Detail & Related papers (2022-11-02T17:58:20Z) - Controllable Evaluation and Generation of Physical Adversarial Patch on
Face Recognition [49.42127182149948]
Recent studies have revealed the vulnerability of face recognition models against physical adversarial patches.
We propose to simulate the complex transformations of faces in the physical world via 3D-face modeling.
We further propose a Face3DAdv method considering the 3D face transformations and realistic physical variations.
arXiv Detail & Related papers (2022-03-09T10:21:40Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
This work explores facial expression bias as a security vulnerability of face recognition systems.
We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies.
arXiv Detail & Related papers (2020-11-17T18:12:41Z) - SER-FIQ: Unsupervised Estimation of Face Image Quality Based on
Stochastic Embedding Robustness [15.431761867166]
We propose a novel concept to measure face quality based on an arbitrary face recognition model.
We compare our proposed solution on two face embeddings against six state-of-the-art approaches from academia and industry.
arXiv Detail & Related papers (2020-03-20T16:50:30Z) - On the Robustness of Face Recognition Algorithms Against Attacks and
Bias [78.68458616687634]
Face recognition algorithms have demonstrated very high recognition performance, suggesting suitability for real world applications.
Despite the enhanced accuracies, robustness of these algorithms against attacks and bias has been challenged.
This paper summarizes different ways in which the robustness of a face recognition algorithm is challenged.
arXiv Detail & Related papers (2020-02-07T18:21:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.