論文の概要: Active learning of neural population dynamics using two-photon holographic optogenetics
- arxiv url: http://arxiv.org/abs/2412.02529v1
- Date: Tue, 03 Dec 2024 16:21:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:48:11.860646
- Title: Active learning of neural population dynamics using two-photon holographic optogenetics
- Title(参考訳): 2光子ホログラフィオロジェネティクスを用いた神経集団動態の能動的学習
- Authors: Andrew Wagenmaker, Lu Mi, Marton Rozsa, Matthew S. Bull, Karel Svoboda, Kayvon Daie, Matthew D. Golub, Kevin Jamieson,
- Abstract要約: 神経集団動態を同定するための最も効果的な光刺激パターンを決定する方法を開発した。
我々は、実データと合成データの両方にアプローチを示し、いくつかのケースでは、所定の予測力に到達するために必要なデータの量を2倍に減らすことができる。
- 参考スコア(独自算出の注目度): 7.012511757539906
- License:
- Abstract: Recent advances in techniques for monitoring and perturbing neural populations have greatly enhanced our ability to study circuits in the brain. In particular, two-photon holographic optogenetics now enables precise photostimulation of experimenter-specified groups of individual neurons, while simultaneous two-photon calcium imaging enables the measurement of ongoing and induced activity across the neural population. Despite the enormous space of potential photostimulation patterns and the time-consuming nature of photostimulation experiments, very little algorithmic work has been done to determine the most effective photostimulation patterns for identifying the neural population dynamics. Here, we develop methods to efficiently select which neurons to stimulate such that the resulting neural responses will best inform a dynamical model of the neural population activity. Using neural population responses to photostimulation in mouse motor cortex, we demonstrate the efficacy of a low-rank linear dynamical systems model, and develop an active learning procedure which takes advantage of low-rank structure to determine informative photostimulation patterns. We demonstrate our approach on both real and synthetic data, obtaining in some cases as much as a two-fold reduction in the amount of data required to reach a given predictive power. Our active stimulation design method is based on a novel active learning procedure for low-rank regression, which may be of independent interest.
- Abstract(参考訳): 近年、神経集団のモニタリングと摂動技術が進歩し、脳内の回路を研究する能力が大幅に向上した。
特に、2光子ホログラフィック光遺伝学は、個々のニューロンの実験者特定グループの正確な光刺激を可能にし、同時に2光子カルシウムイメージングは、神経集団全体での継続的な活動と誘導活動の測定を可能にする。
潜在的な光刺激パターンの膨大な空間と光刺激実験の時間的性質にもかかわらず、神経集団の動態を識別するための最も効果的な光刺激パターンを決定するためのアルゴリズム的な研究はほとんど行われていない。
そこで我々は,どのニューロンを刺激するかを効率よく選択し,その結果のニューラル応答が神経集団活動の動的モデルに最も影響を与えるようにする方法を開発した。
マウス運動野における光刺激に対する神経集団応答を用いて、低ランク線形力学系モデルの有効性を実証し、低ランク構造を利用して情報的光刺激パターンを決定する能動的学習法を開発した。
我々は、実データと合成データの両方にアプローチを示し、いくつかのケースでは、所定の予測力に到達するために必要なデータの量を2倍に減らすことができる。
我々の能動刺激設計法は、独立性のある低ランク回帰のための新しい能動学習法に基づいている。
関連論文リスト
- Modeling dynamic neural activity by combining naturalistic video stimuli and stimulus-independent latent factors [5.967290675400836]
本稿では,刺激非依存の潜伏因子とともに映像入力を組み込んだ確率論的モデルを提案する。
マウスV1ニューロン反応のトレーニングとテストを行った結果、ビデオのみのモデルよりもログライクな結果が得られた。
その結果,学習した潜伏因子はマウスの行動と強く相関していることがわかった。
論文 参考訳(メタデータ) (2024-10-21T16:01:39Z) - BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation [6.3559178227943764]
本稿では,特権的知識蒸留による行動誘導型ニューラル人口動態モデリングフレームワークBLENDを提案する。
特権情報として行動を考えることにより、行動観察(私的特徴)と神経活動(正規特徴)の両方を入力として扱う教師モデルを訓練する。
学生モデルは神経活動のみを用いて蒸留される。
論文 参考訳(メタデータ) (2024-10-02T12:45:59Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
皮質補綴は視覚野に移植された装置で、電気的にニューロンを刺激することで失った視力を回復しようとする。
現在、これらのデバイスが提供する視覚は限られており、刺激による視覚知覚を正確に予測することはオープンな課題である。
我々は、視覚システムの有望なモデルとして登場した「脳様」畳み込みニューラルネットワーク(CNN)を活用することで、この問題に対処することを提案する。
論文 参考訳(メタデータ) (2022-09-27T17:33:19Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
我々は、個々のニューロンの応答を明示的にモデル化するNDTベースのアーキテクチャであるSpatioTemporal Neural Data Transformer (STNDT)を紹介する。
本モデルは,4つのニューラルデータセット間での神経活動の推定において,アンサンブルレベルでの最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2022-06-09T18:54:23Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
我々は、-CycleGANと呼ばれる深層生成モデルを用いて、前学習と後学習の神経活動の間の未知のマッピングを学習する。
我々は,カルシウム蛍光信号を前処理し,訓練し,評価するためのエンドツーエンドパイプラインを開発し,その結果の深層学習モデルを解釈する手法を開発した。
論文 参考訳(メタデータ) (2021-11-25T13:24:19Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - Fooling the primate brain with minimal, targeted image manipulation [67.78919304747498]
本稿では、行動に反映される神経活動と知覚の両方の変化をもたらす、最小限の標的画像摂動を生成するための一連の手法を提案する。
我々の研究は、敵対的攻撃、すなわち最小限のターゲットノイズによる画像の操作で同じ目標を共有し、ANNモデルに画像の誤分類を誘導する。
論文 参考訳(メタデータ) (2020-11-11T08:30:54Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。