Graph-Powered Defense: Controller Area Network Intrusion Detection for Unmanned Aerial Vehicles
- URL: http://arxiv.org/abs/2412.02539v1
- Date: Tue, 03 Dec 2024 16:32:57 GMT
- Title: Graph-Powered Defense: Controller Area Network Intrusion Detection for Unmanned Aerial Vehicles
- Authors: Reek Majumder, Gurcan Comert, David Werth, Adrian Gale, Mashrur Chowdhury, M Sabbir Salek,
- Abstract summary: Unmanned Aerial Vehicles (UAVs) are not robust enough against cyberattacks, especially on the Controller Area Network (CAN) bus.
In this study, we focus on solving some of the most critical security weaknesses in UAVs by developing a novel graph-based intrusion detection system.
We apply various graph-based machine learning models for detecting cyber-attacks on the CAN bus.
- Score: 7.333490062088133
- License:
- Abstract: The network of services, including delivery, farming, and environmental monitoring, has experienced exponential expansion in the past decade with Unmanned Aerial Vehicles (UAVs). Yet, UAVs are not robust enough against cyberattacks, especially on the Controller Area Network (CAN) bus. The CAN bus is a general-purpose vehicle-bus standard to enable microcontrollers and in-vehicle computers to interact, primarily connecting different Electronic Control Units (ECUs). In this study, we focus on solving some of the most critical security weaknesses in UAVs by developing a novel graph-based intrusion detection system (IDS) leveraging the Uncomplicated Application-level Vehicular Communication and Networking (UAVCAN) protocol. First, we decode CAN messages based on UAVCAN protocol specification; second, we present a comprehensive method of transforming tabular UAVCAN messages into graph structures. Lastly, we apply various graph-based machine learning models for detecting cyber-attacks on the CAN bus, including graph convolutional neural networks (GCNNs), graph attention networks (GATs), Graph Sample and Aggregate Networks (GraphSAGE), and graph structure-based transformers. Our findings show that inductive models such as GATs, GraphSAGE, and graph-based transformers can achieve competitive and even better accuracy than transductive models like GCNNs in detecting various types of intrusions, with minimum information on protocol specification, thus providing a generic robust solution for CAN bus security for the UAVs. We also compared our results with baseline single-layer Long Short-Term Memory (LSTM) and found that all our graph-based models perform better without using any decoded features based on the UAVCAN protocol, highlighting higher detection performance with protocol-independent capability.
Related papers
- Predictive Covert Communication Against Multi-UAV Surveillance Using Graph Koopman Autoencoder [27.178522837149053]
Low Probability of Detection (LPD) communication aims to obscure the presence of radio frequency (RF) signals to evade surveillance.
accurately predicting future locations of UAVs is essential for enabling real-time LPD communication.
We introduce a novel framework termed predictive covert communication, aimed at minimizing detectability in terrestrial ad-hoc networks under multi-UAV surveillance.
arXiv Detail & Related papers (2024-09-25T16:02:45Z) - UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection [0.03464344220266879]
This paper introduces UAVDB, a high-resolution UAV detection dataset constructed using Patch Intensity Convergence (PIC)
We first validate the accuracy and efficiency of PIC-generated bounding boxes by comparing Intersection over Union (IoU) performance and runtime.
We then benchmark UAVDB using state-of-the-art (SOTA) YOLO-series detectors, establishing UAVDB as a valuable resource for advancing long-range and high-resolution UAV detection.
arXiv Detail & Related papers (2024-09-09T13:27:53Z) - Detecting Masquerade Attacks in Controller Area Networks Using Graph Machine Learning [0.2812395851874055]
This paper introduces a novel framework for detecting masquerade attacks in the CAN bus using graph machine learning (ML)
We show that by representing CAN bus frames as message sequence graphs (MSGs) and enriching each node with contextual statistical attributes from time series, we can enhance detection capabilities.
Our method ensures a comprehensive and dynamic analysis of CAN frame interactions, improving robustness and efficiency.
arXiv Detail & Related papers (2024-08-10T04:17:58Z) - Exploring Highly Quantised Neural Networks for Intrusion Detection in
Automotive CAN [13.581341206178525]
Machine learning-based intrusion detection models have been shown to successfully detect multiple targeted attack vectors.
In this paper, we present a case for custom-quantised literature (CQMLP) as a multi-class classification model.
We show that the 2-bit CQMLP model, when integrated as the IDS, can detect malicious attack messages with a very high accuracy of 99.9%.
arXiv Detail & Related papers (2024-01-19T21:11:02Z) - A Lightweight Multi-Attack CAN Intrusion Detection System on Hybrid
FPGAs [13.581341206178525]
Intrusion detection and mitigation approaches have shown promising results in detecting multiple attack vectors in Controller Area Network (CAN)
We present a lightweight multi-attack quantised machine learning model that is deployed using Xilinx's Deep Learning Processing Unit IP on a Zynq Ultrascale+ (XCZU3EG) FPGA.
The model detects denial of service and fuzzing attacks with an accuracy of above 99 % and a false positive rate of 0.07%, which are comparable to the state-of-the-art techniques in the literature.
arXiv Detail & Related papers (2024-01-19T13:39:05Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Scalable Perception-Action-Communication Loops with Convolutional and
Graph Neural Networks [208.15591625749272]
We present a perception-action-communication loop design using Vision-based Graph Aggregation and Inference (VGAI)
Our framework is implemented by a cascade of a convolutional and a graph neural network (CNN / GNN), addressing agent-level visual perception and feature learning.
We demonstrate that VGAI yields performance comparable to or better than other decentralized controllers.
arXiv Detail & Related papers (2021-06-24T23:57:21Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
We study the problem of air-to-ground ultra-reliable and low-latency communication (URLLC) for a moving ground user.
We propose a novel multi-agent deep reinforcement learning framework, coined a graph attention exchange network (GAXNet)
GAXNet achieves 6.5x lower latency with the target 0.0000001 error rate, compared to a state-of-the-art baseline framework.
arXiv Detail & Related papers (2021-05-22T12:43:25Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Taurus: A Data Plane Architecture for Per-Packet ML [59.1343317736213]
We present the design and implementation of Taurus, a data plane for line-rate inference.
Our evaluation of a Taurus switch ASIC shows that Taurus operates orders of magnitude faster than a server-based control plane.
arXiv Detail & Related papers (2020-02-12T09:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.