論文の概要: AI-Driven Resource Allocation Framework for Microservices in Hybrid Cloud Platforms
- arxiv url: http://arxiv.org/abs/2412.02610v1
- Date: Tue, 03 Dec 2024 17:41:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:49:37.968254
- Title: AI-Driven Resource Allocation Framework for Microservices in Hybrid Cloud Platforms
- Title(参考訳): ハイブリッドクラウドプラットフォームにおけるマイクロサービスのためのAI駆動リソース割り当てフレームワーク
- Authors: Biman Barua, M. Shamim Kaiser,
- Abstract要約: 本稿では,ハイブリッドクラウドプラットフォームにおけるリソース割り当てのためのAI駆動型フレームワークを提案する。
このフレームワークは、コスト削減と性能向上のために強化学習(RL)ベースのリソース利用最適化を採用している。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License:
- Abstract: The increasing demand for scalable, efficient resource management in hybrid cloud environments has led to the exploration of AI-driven approaches for dynamic resource allocation. This paper presents an AI-driven framework for resource allocation among microservices in hybrid cloud platforms. The framework employs reinforcement learning (RL)-based resource utilization optimization to reduce costs and improve performance. The framework integrates AI models with cloud management tools to respond to challenges of dynamic scaling and cost-efficient low-latency service delivery. The reinforcement learning model continuously adjusts provisioned resources as required by the microservices and predicts the future consumption trends to minimize both under- and over-provisioning of resources. Preliminary simulation results indicate that using AI in the provision of resources related to costs can reduce expenditure by up to 30-40% compared to manual provisioning and threshold-based auto-scaling approaches. It is also estimated that the efficiency in resource utilization is expected to improve by 20%-30% with a corresponding latency cut of 15%-20% during the peak demand periods. This study compares the AI-driven approach with existing static and rule-based resource allocation methods, demonstrating the capability of this new model to outperform them in terms of flexibility and real-time interests. The results indicate that reinforcement learning can make optimization of hybrid cloud platforms even better, offering a 25-35% improvement in cost efficiency and the power of scaling for microservice-based applications. The proposed framework is a strong and scalable solution to managing cloud resources in dynamic and performance-critical environments.
- Abstract(参考訳): ハイブリッドクラウド環境におけるスケーラブルで効率的なリソース管理の需要の増加は、動的リソース割り当てのためのAI駆動アプローチの探索につながった。
本稿では、ハイブリッドクラウドプラットフォームにおけるマイクロサービス間のリソース割り当てのためのAI駆動フレームワークを提案する。
このフレームワークは、コスト削減と性能向上のために強化学習(RL)ベースのリソース利用最適化を採用している。
このフレームワークは、動的スケーリングとコスト効率の低い低レイテンシサービスデリバリの課題に対応するために、AIモデルとクラウド管理ツールを統合する。
強化学習モデルは、マイクロサービスが要求するプロビジョニングされたリソースを継続的に調整し、将来の消費トレンドを予測し、リソースの過小評価と過剰なプロビジョニングを最小化する。
予備シミュレーションの結果は、コストに関するリソースの供給にAIを使用することで、手動プロビジョニングやしきい値ベースの自動スケーリングアプローチと比較して、最大で30~40%の支出を削減できることを示している。
また,資源利用効率が20%~30%向上し,ピーク需要期間中に15%~20%の遅延削減が期待されている。
この研究は、AI駆動のアプローチを既存の静的およびルールベースのリソース割り当て手法と比較し、柔軟性とリアルタイムの関心事の観点から、この新しいモデルがそれらを上回る能力を示す。
その結果、強化学習によってハイブリッドクラウドプラットフォームの最適化がさらに改善され、コスト効率が25~35%向上し、マイクロサービスベースのアプリケーションのスケーリングのパワーが向上することが示された。
提案されたフレームワークは、動的かつパフォーマンスクリティカルな環境でクラウドリソースを管理するための、強力でスケーラブルなソリューションである。
関連論文リスト
- Reinforcement Learning Controlled Adaptive PSO for Task Offloading in IIoT Edge Computing [0.0]
産業用IoT(Industrial Internet of Things)アプリケーションは、低レイテンシで重いデータ負荷を処理するために、効率的なタスクオフロードを要求する。
モバイルエッジコンピューティング(MEC)は、レイテンシとサーバ負荷を低減するために、デバイスに計算を近づける。
本稿では,適応粒子群最適化(APSO)と強化学習,特にソフトアクタ批判(SAC)を組み合わせた新しい解を提案する。
論文 参考訳(メタデータ) (2025-01-25T13:01:54Z) - Secure Resource Allocation via Constrained Deep Reinforcement Learning [49.15061461220109]
リソース割り当て、タスクオフロード、セキュリティ、パフォーマンスのバランスをとるフレームワークであるSARMTOを紹介します。
SARMTOは5つのベースラインアプローチを一貫して上回り、最大40%のシステムコスト削減を実現している。
これらの拡張は、複雑な分散コンピューティング環境におけるリソース管理に革命をもたらすSARMTOの可能性を強調している。
論文 参考訳(メタデータ) (2025-01-20T15:52:43Z) - Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
フェデレートラーニング(FL)は、エッジデバイスが生データを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
しかし、電力、帯域幅などの制約のあるリソースを持つモバイルエッジネットワーク上にFLをデプロイすることは、高いトレーニングレイテンシと低いモデルの精度に悩まされる。
本稿では,資源制約と不確実性の下で,モバイルエッジネットワーク上でのFLの最適なクライアントスケジューリングとリソース割り当てについて検討する。
論文 参考訳(メタデータ) (2024-09-29T01:56:45Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
近年のLarge Language Models (LLM) 開発において,"Bigger the Better" が主流となっている。
本稿では、リソース制約のあるデバイスに対して、正確かつ効率的なSLM(Small Language Models)を設計する上での課題に対処し、"less is more"パラダイムについて考察する。
論文 参考訳(メタデータ) (2024-02-26T18:59:03Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - A Cost-Aware Mechanism for Optimized Resource Provisioning in Cloud
Computing [6.369406986434764]
我々は,要求のコスト削減を保証する新しい学習ベースの資源供給手法を提案してきた。
我々の手法は要求のほとんどを効率的に適応させ、さらに結果のパフォーマンスは設計目標に合致する。
論文 参考訳(メタデータ) (2023-09-20T13:27:30Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - CILP: Co-simulation based Imitation Learner for Dynamic Resource
Provisioning in Cloud Computing Environments [13.864161788250856]
レイテンシクリティカルなタスクの主な課題は、積極的にプロビジョニングする将来のワークロード要求を予測することだ。
既存のAIベースのソリューションは、プロビジョニングのオーバーヘッド、異種VMコスト、クラウドシステムの品質(QoS)など、すべての重要な側面を公平に考慮しない傾向があります。
予測と最適化の2つのサブプロブレムとしてVMプロビジョニング問題を定式化するCILPと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-11T09:15:34Z) - ANDREAS: Artificial intelligence traiNing scheDuler foR accElerAted
resource clusterS [1.798617052102518]
パフォーマンスを最大化し、データセンターの運用コストを最小限に抑える高度なスケジューリングソリューションであるANDREASを提案します。
実験の結果,第一原理法では平均で30~62%のコスト削減が可能であった。
論文 参考訳(メタデータ) (2021-05-11T14:36:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。