論文の概要: Probing the statistical properties of enriched co-occurrence networks
- arxiv url: http://arxiv.org/abs/2412.02664v1
- Date: Tue, 03 Dec 2024 18:38:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:43:40.944365
- Title: Probing the statistical properties of enriched co-occurrence networks
- Title(参考訳): 豊富な共起ネットワークの統計的性質の探索
- Authors: Diego R. Amancio, Jeaneth Machicao, Laura V. C. Quispe,
- Abstract要約: 本研究では,テキストベースネットワークモデルの2つの重要な統計特性について検討する。
仮想エッジを組み込むと、特定のネットワークメトリックによって正および負の効果が得られることを示す。
私たちの結果は、特定のアプリケーションに最も適したネットワークメトリクスを決定するためのガイドラインとして役立ちます。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent studies have explored the addition of virtual edges to word co-occurrence networks using word embeddings to enhance graph representations, particularly for short texts. While these enriched networks have demonstrated some success, the impact of incorporating semantic edges into traditional co-occurrence networks remains uncertain. This study investigates two key statistical properties of text-based network models. First, we assess whether network metrics can effectively distinguish between meaningless and meaningful texts. Second, we analyze whether these metrics are more sensitive to syntactic or semantic aspects of the text. Our results show that incorporating virtual edges can have positive and negative effects, depending on the specific network metric. For instance, the informativeness of the average shortest path and closeness centrality improves in short texts, while the clustering coefficient's informativeness decreases as more virtual edges are added. Additionally, we found that including stopwords affects the statistical properties of enriched networks. Our results can serve as a guideline for determining which network metrics are most appropriate for specific applications, depending on the typical text size and the nature of the problem.
- Abstract(参考訳): 近年,単語埋め込みによる単語共起ネットワークへの仮想エッジの追加について検討している。
これらの強化されたネットワークはいくつかの成功を収めてきたが、従来の共起ネットワークにセマンティックエッジを組み込むことによる影響はいまだ不明である。
本研究では,テキストベースネットワークモデルの2つの重要な統計特性について検討する。
まず、ネットワークメトリクスが意味のないテキストと意味のあるテキストを効果的に区別できるかどうかを評価する。
第二に、これらの指標がテキストの構文的側面や意味的側面により敏感であるかどうかを分析する。
以上の結果から,仮想エッジを組み込むと,ネットワークのパラメータによって正および負の影響が生じる可能性が示唆された。
例えば、平均最短経路と近接度中心性が短文で向上する一方、クラスタリング係数の通知性は、より多くの仮想エッジが追加されるにつれて減少する。
さらに、停止語を含むと、拡張されたネットワークの統計特性に影響を及ぼすことがわかった。
この結果は,典型的なテキストサイズや問題の性質に応じて,特定のアプリケーションに最も適しているネットワークメトリクスを決定するためのガイドラインとして機能する。
関連論文リスト
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - Classification of vertices on social networks by multiple approaches [1.370151489527964]
ソーシャルネットワークの場合、個別のコミュニティのラベルを評価することが不可欠である。
これらのインタラクションベースのエンティティそれぞれに対して、テストベンチリポジトリとして、ソーシャルグラフ、メーリングデータセット、および2つの引用セットが選択される。
本論文は,最も有用な手法だけでなく,グラフニューラルネットワークの動作方法も検討した。
論文 参考訳(メタデータ) (2023-01-13T09:42:55Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
インフルエンサー検出のための動的グラフニューラルネットワーク(GNN)の構成について検討する。
GNNにおける深層多面的注意と時間特性の符号化が性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-15T13:00:25Z) - Affinity-Aware Graph Networks [9.888383815189176]
グラフニューラルネットワーク(GNN)は、リレーショナルデータを学ぶための強力なテクニックとして登場した。
グラフニューラルネットワークの特徴としてアフィニティ尺度の利用について検討する。
本稿では,これらの特徴に基づくメッセージパッシングネットワークを提案し,その性能を様々なノードおよびグラフ特性予測タスクで評価する。
論文 参考訳(メタデータ) (2022-06-23T18:51:35Z) - TeKo: Text-Rich Graph Neural Networks with External Knowledge [75.91477450060808]
外部知識を用いた新しいテキストリッチグラフニューラルネットワーク(TeKo)を提案する。
まず、高品質なエンティティを組み込んだフレキシブルな異種セマンティックネットワークを提案する。
次に、構造化三重項と非構造化実体記述という2種類の外部知識を導入する。
論文 参考訳(メタデータ) (2022-06-15T02:33:10Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6Gネットワークはデータ転送のセマンティクスと有効性(エンドユーザ)を考慮する必要がある。
観測データの背後にある因果構造を学習するための柱としてNeSy AIが提案されている。
GFlowNetは、無線システムにおいて初めて活用され、データを生成する確率構造を学ぶ。
論文 参考訳(メタデータ) (2022-05-22T07:11:57Z) - Using virtual edges to extract keywords from texts modeled as complex
networks [0.1611401281366893]
我々は,単語とエッジが文脈的あるいは意味的類似性によって確立されるようなテキスト共起ネットワークをモデル化した。
実際、仮想エッジを使用することで、共起ネットワークの識別性が向上することがわかった。
論文 参考訳(メタデータ) (2022-05-04T16:43:03Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
グラフニューラルネットワーク(GNN)は、研究コミュニティで注目され、この標準タスクで有望な結果を実証している。
成功にもかかわらず、それらのパフォーマンスは、単語間の高次相互作用をキャプチャできないため、実際は大部分が危険に晒される可能性がある。
本稿では,テキスト表現学習において,少ない計算量でより表現力の高いハイパーグラフアテンションネットワーク(HyperGAT)を提案する。
論文 参考訳(メタデータ) (2020-11-01T00:21:59Z) - Towards Accurate Scene Text Recognition with Semantic Reasoning Networks [52.86058031919856]
本稿では,シーンテキスト認識のための意味推論ネットワーク(SRN)という,エンドツーエンドのトレーニング可能な新しいフレームワークを提案する。
GSRMはマルチウェイ並列伝送によってグローバルセマンティックコンテキストをキャプチャするために導入された。
正規テキスト,不規則テキスト,非ラテン語長文を含む7つの公開ベンチマークの結果,提案手法の有効性とロバスト性を検証した。
論文 参考訳(メタデータ) (2020-03-27T09:19:25Z) - Using word embeddings to improve the discriminability of co-occurrence
text networks [0.1611401281366893]
共起ネットワークにおける仮想リンク作成ツールとしての単語埋め込みの利用により,分類システムの品質が向上するかどうかを検討する。
その結果,Glove,Word2Vec,FastTextでは,スタイメトリータスクの識別性が向上していることがわかった。
論文 参考訳(メタデータ) (2020-03-13T13:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。