DYffCast: Regional Precipitation Nowcasting Using IMERG Satellite Data. A case study over South America
- URL: http://arxiv.org/abs/2412.02723v1
- Date: Mon, 02 Dec 2024 22:20:31 GMT
- Title: DYffCast: Regional Precipitation Nowcasting Using IMERG Satellite Data. A case study over South America
- Authors: Daniel Seal, Rossella Arcucci, Salva Rühling-Cachay, César Quilodrán-Casas,
- Abstract summary: The ability to accurately nowcast precipitation is becoming more critical for safeguarding society.
Motivated by the recent success of generative models at precipitation nowcasting, this paper: extends the DYffusion framework to this task.
It modifies the DYffusion framework to improve its ability to model rainfall data; and introduces a novel loss function that combines MSE, MAE and the LPIPS perceptual score.
- Score: 3.583227696181354
- License:
- Abstract: Climate change is increasing the frequency of extreme precipitation events, making weather disasters such as flooding and landslides more likely. The ability to accurately nowcast precipitation is therefore becoming more critical for safeguarding society by providing immediate, accurate information to decision makers. Motivated by the recent success of generative models at precipitation nowcasting, this paper: extends the DYffusion framework to this task and evaluates its performance at forecasting IMERG satellite precipitation data up to a 4-hour horizon; modifies the DYffusion framework to improve its ability to model rainfall data; and introduces a novel loss function that combines MSE, MAE and the LPIPS perceptual score. In a quantitative evaluation of forecasts up to a 4-hour horizon, the modified DYffusion framework trained with the novel loss outperforms four competitor models. It has the highest CSI scores for weak, moderate, and heavy rain thresholds and retains an LPIPS score $<$ 0.2 for the entire roll-out, degrading the least as lead-time increases. The proposed nowcasting model demonstrates visually stable and sharp forecasts up to a 2-hour horizon on a heavy rain case study. Code is available at https://github.com/Dseal95/DYffcast.
Related papers
- Skillful High-Resolution Ensemble Precipitation Forecasting with an Integrated Deep Learning Framework [4.3313006430322165]
High-resolution precipitation forecasts are crucial for providing accurate weather prediction and supporting effective responses to extreme weather events.
We propose a physics-inspired deep learning framework for high-resolution ensemble precipitation forecasting.
arXiv Detail & Related papers (2025-01-06T10:29:38Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Nowcasting-Nets: Deep Neural Network Structures for Precipitation
Nowcasting Using IMERG [1.9860735109145415]
We use Recurrent and Convolutional deep neural network structures to address the challenge of precipitation nowcasting.
A total of five models are trained using Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation data over the Eastern Contiguous United States (CONUS)
The models were designed to provide forecasts with a lead time of up to 1.5 hours and, by using a feedback loop approach, the ability of the models to extend the forecast time to 4.5 hours was also investigated.
arXiv Detail & Related papers (2021-08-16T02:55:32Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
We propose a new deep learning model for precipitation nowcasting that includes both the discrimination and attention techniques.
The model is examined on a newly-built benchmark dataset that contains both radar data and actual rain data.
arXiv Detail & Related papers (2021-02-16T14:22:54Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.