論文の概要: Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing
- arxiv url: http://arxiv.org/abs/2412.02779v1
- Date: Tue, 03 Dec 2024 19:20:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:09:14.886257
- Title: Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing
- Title(参考訳): ロバストアナログコンピューティングのためのペロブスカイト中間子とアルゴリズムの相乗的開発
- Authors: Nanyang Ye, Qiao Sun, Yifei Wang, Liujia Yang, Jundong Zhou, Lei Wang, Guang-Zhong Yang, Xinbing Wang, Chenghu Zhou, Huaqiang Wu, Qinying Gu,
- Abstract要約: 本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
- 参考スコア(独自算出の注目度): 56.039893470324
- License:
- Abstract: Analog computing using non-volatile memristors has emerged as a promising solution for energy-efficient deep learning. New materials, like perovskites-based memristors are recently attractive due to their cost-effectiveness, energy efficiency and flexibility. Yet, challenges in material diversity and immature fabrications require extensive experimentation for device development. Moreover, significant non-idealities in these memristors often impede them for computing. Here, we propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs that effectively address the inherent non-idealities of these memristors. Employing Bayesian optimization (BO) with a focus on usability, we efficiently identify optimal materials and fabrication conditions for perovskite memristors. Meanwhile, we developed "BayesMulti", a DNN training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections. Our approach theoretically ensures that within a certain range of parameter perturbations due to memristor non-idealities, the prediction outcomes remain consistent. Our integrated approach enables use of analog computing in much deeper and wider networks, which significantly outperforms existing methods in diverse tasks like image classification, autonomous driving, species identification, and large vision-language models, achieving up to 100-fold improvements. We further validate our methodology on a 10$\times$10 optimized perovskite memristor crossbar, demonstrating high accuracy in a classification task and low energy consumption. This study offers a versatile solution for efficient optimization of various analog computing systems, encompassing both devices and algorithms.
- Abstract(参考訳): 非揮発性メムリスタを用いたアナログコンピューティングは、エネルギー効率の高いディープラーニングのための有望なソリューションとして登場した。
ペロブスカイトをベースとしたメムリスタのような新しい素材は、コスト効率、エネルギー効率、柔軟性のために近年魅力的だ。
しかし、材料多様性と未熟な製造における課題は、デバイス開発に広範な実験を必要とする。
さらに、これらの memristor における重要な非イデオロギーは、しばしば計算に支障をきたす。
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化する相乗的手法を提案し,これらのメムリスタの本質的非理想性に効果的に対処する頑健なアナログDNNを開発する。
ユーザビリティを重視したベイズ最適化(BO)を用い,ペロブスカイト・メムリスタの最適材料と製造条件を効率的に同定する。
一方,BO誘導ノイズ注入を用いたDNNトレーニング手法であるBayesMultiを開発した。
理論的には, 中間子非理想性によるパラメータ摂動の一定範囲内において, 予測結果が一定であることを保証する。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、画像分類、自律運転、種別識別、大規模視覚言語モデルなど、さまざまなタスクにおいて既存の手法を著しく上回り、最大100倍の改善を達成します。
さらに,10$\times$10最適化ペロブスカイト式メムリスタクロスバーを用いて,分類作業の高精度化と低消費電力化を実証した。
本研究は,デバイスとアルゴリズムの両方を包含する,様々なアナログコンピューティングシステムの効率的な最適化のための汎用的ソリューションを提供する。
関連論文リスト
- Constrained Hybrid Metaheuristic Algorithm for Probabilistic Neural Networks Learning [0.3686808512438362]
本研究では、確率論的ニューラルネットワーク(PNN)のトレーニングを強化するためのハイブリッドメタヒューリスティックアルゴリズムの可能性について検討する。
勾配に基づくアプローチのような伝統的な学習手法は、しばしば高次元で不確実な環境を最適化するのに苦労する。
本稿では,複数の個体群に基づく最適化手法を組み合わせた制約付きハイブリッドメタヒューリスティック(cHM)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-26T19:49:16Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Automated and Holistic Co-design of Neural Networks and ASICs for Enabling In-Pixel Intelligence [4.063480188363124]
放射能検出のための可読ASICなどの極端エッジAIシステムは、厳密なハードウェア制約の下で動作しなければならない。
理想的なソリューションを見つけることは、爆発的に拡張されたデザイン空間から最適なAIとASIC設計の選択を特定することを意味する。
論文 参考訳(メタデータ) (2024-07-18T17:58:05Z) - Hardware-Aware Neural Dropout Search for Reliable Uncertainty Prediction on FPGA [11.123116470454079]
この分野では、ドロップアウトベースのベイズニューラルネットワーク(BayesNN)が顕著であり、確実な不確実性推定を提供する。
既存のドロップアウトベースのベイズNNは、通常、異なる層にまたがる均一なドロップアウト設計を採用しており、亜最適性能をもたらす。
本稿では,ByesNNとFPGA上でのハードウェア実装の両方を自動最適化するニューラルドロップアウト検索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-23T19:33:19Z) - Edge-Efficient Deep Learning Models for Automatic Modulation Classification: A Performance Analysis [0.7428236410246183]
無線信号の自動変調分類(AMC)のための最適化畳み込みニューラルネットワーク(CNN)について検討した。
本稿では,これらの手法を組み合わせて最適化モデルを提案する。
実験結果から,提案手法と組み合わせ最適化手法は,複雑度が著しく低いモデルの開発に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-04-11T06:08:23Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AIモデルは、エネルギー消費と環境持続可能性に前例のない課題を提示する。
有望な解決策の1つは、アナログコンピューティングを再考することである。
ここでは、構造的塑性に着想を得たエッジプルーニングを用いたユニバーサルソリューション、ソフトウェア・ハードウエアの共設計について報告する。
論文 参考訳(メタデータ) (2023-11-13T08:59:01Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
我々は車載OCCにおけるスペクトル効率最適化手法を提案する。
我々は最適化問題をマルコフ決定プロセス(MDP)としてモデル化し、オンラインで適用可能なソリューションの利用を可能にする。
提案手法の性能を広範囲なシミュレーションにより検証し,提案手法の様々な変種とランダムな手法との比較を行った。
論文 参考訳(メタデータ) (2022-05-05T14:25:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。