Artificial Intelligence Policy Framework for Institutions
- URL: http://arxiv.org/abs/2412.02834v1
- Date: Tue, 03 Dec 2024 20:56:47 GMT
- Title: Artificial Intelligence Policy Framework for Institutions
- Authors: William Franz Lamberti,
- Abstract summary: This paper delves into key considerations for developing AI policies within institutions.
We explore the importance of interpretability and explainability in AI elements, as well as the need to mitigate biases and ensure privacy.
- Score: 0.0
- License:
- Abstract: Artificial intelligence (AI) has transformed various sectors and institutions, including education and healthcare. Although AI offers immense potential for innovation and problem solving, its integration also raises significant ethical concerns, such as privacy and bias. This paper delves into key considerations for developing AI policies within institutions. We explore the importance of interpretability and explainability in AI elements, as well as the need to mitigate biases and ensure privacy. Additionally, we discuss the environmental impact of AI and the importance of energy-efficient practices. The culmination of these important components is centralized in a generalized framework to be utilized for institutions developing their AI policy. By addressing these critical factors, institutions can harness the power of AI while safeguarding ethical principles.
Related papers
- From Principles to Practice: A Deep Dive into AI Ethics and Regulations [13.753819576072127]
The article thoroughly analyzes the ground-breaking AI regulatory framework proposed by the European Union.
Considering the technical efforts and strategies undertaken by academics and industry to uphold these principles, we explore the synergies and conflicts among the five ethical principles.
arXiv Detail & Related papers (2024-12-06T00:46:20Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Towards a Privacy and Security-Aware Framework for Ethical AI: Guiding
the Development and Assessment of AI Systems [0.0]
This study conducts a systematic literature review spanning the years 2020 to 2023.
Through the synthesis of knowledge extracted from the SLR, this study presents a conceptual framework tailored for privacy- and security-aware AI systems.
arXiv Detail & Related papers (2024-03-13T15:39:57Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - The Global Impact of AI-Artificial Intelligence: Recent Advances and
Future Directions, A Review [0.0]
The article highlights the implications of AI, including its impact on economic, ethical, social, security & privacy, and job displacement aspects.
It discusses the ethical concerns surrounding AI development, including issues of bias, security, and privacy violations.
The article concludes by emphasizing the importance of public engagement and education to promote awareness and understanding of AI's impact on society at large.
arXiv Detail & Related papers (2023-12-22T00:41:21Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
Ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact.
This work unifies the current and future ethical concerns of deploying AI into society.
arXiv Detail & Related papers (2023-11-28T21:00:56Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
The paper highlights the impact AI has in every sector of the US economy and the resultant effect on entities spanning businesses, government, academia, and civil society.
Our discussion explores eleven fundamental 'ethical principles' structured as overarching themes.
These encompass Transparency, Justice, Fairness, Equity, Non- Maleficence, Responsibility, Accountability, Privacy, Beneficence, Freedom, Autonomy, Trust, Dignity, Sustainability, and Solidarity.
arXiv Detail & Related papers (2023-10-09T14:29:00Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.