Enhancing Robustness of CLIP to Common Corruptions through Bimodal Test-Time Adaptation
- URL: http://arxiv.org/abs/2412.02837v1
- Date: Tue, 03 Dec 2024 21:02:14 GMT
- Title: Enhancing Robustness of CLIP to Common Corruptions through Bimodal Test-Time Adaptation
- Authors: Sarthak Kumar Maharana, Baoming Zhang, Leonid Karlinsky, Rogerio Feris, Yunhui Guo,
- Abstract summary: We show that zero-shot CLIP lacks robustness to common image corruptions at increasing severity levels during test-time.
We propose framework, a bimodal TTA method specially designed to improve CLIP's robustness to common image corruptions.
We obtain mean accuracy improvements of 9.7%, 5.94%, and 5.12% for CIFAR-10C, CIFAR-100C, and ImageNet-C, respectively.
- Score: 18.278043899825267
- License:
- Abstract: Although open-vocabulary classification models like Contrastive Language Image Pretraining (CLIP) have demonstrated strong zero-shot learning capabilities, their robustness to common image corruptions remains poorly understood. Through extensive experiments, we show that zero-shot CLIP lacks robustness to common image corruptions at increasing severity levels during test-time, necessitating the adaptation of CLIP to unlabeled corrupted images using test-time adaptation (TTA). However, we found that existing TTA methods have severe limitations in adapting CLIP due to their unimodal nature. To address these limitations, we propose \framework, a bimodal TTA method specially designed to improve CLIP's robustness to common image corruptions. The key insight of our approach is not only to adapt the visual encoders for better image feature extraction but also to strengthen the alignment between image and text features by promoting a stronger association between the image class prototype, computed using pseudo-labels, and the corresponding text feature. We evaluate our approach on benchmark image corruption datasets and achieve state-of-the-art results in TTA for CLIP, specifically for domains involving image corruption. Particularly, with a ViT-B/16 vision backbone, we obtain mean accuracy improvements of 9.7%, 5.94%, and 5.12% for CIFAR-10C, CIFAR-100C, and ImageNet-C, respectively.
Related papers
- TAPT: Test-Time Adversarial Prompt Tuning for Robust Inference in Vision-Language Models [53.91006249339802]
We propose a novel defense method called Test-Time Adversarial Prompt Tuning (TAPT) to enhance the inference robustness of CLIP against visual adversarial attacks.
TAPT is a test-time defense method that learns defensive bimodal (textual and visual) prompts to robustify the inference process of CLIP.
We evaluate the effectiveness of TAPT on 11 benchmark datasets, including ImageNet and 10 other zero-shot datasets.
arXiv Detail & Related papers (2024-11-20T08:58:59Z) - TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations.
We show that generating hard'' negative captions via in-context learning and corresponding negative images with text-to-image generators offers a solution.
We demonstrate that our method, named TripletCLIP, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark.
arXiv Detail & Related papers (2024-11-04T19:24:59Z) - Understanding the Vulnerability of CLIP to Image Compression [26.536819387473482]
We show that CLIP is vulnerable to change in image quality under compression.
We evaluate this vulnerability extensively on CIFAR-10 and STL-10.
arXiv Detail & Related papers (2023-11-23T14:33:53Z) - S-CLIP: Semi-supervised Vision-Language Learning using Few Specialist
Captions [69.01985134519244]
Vision-language models, such as contrastive language-image pre-training (CLIP), have demonstrated impressive results in natural image domains.
We propose S-CLIP, a semi-supervised learning method for training CLIP that utilizes additional unpaired images.
S-CLIP improves CLIP by 10% for zero-shot classification and 4% for image-text retrieval on the remote sensing benchmark.
arXiv Detail & Related papers (2023-05-23T14:18:11Z) - Context-Aware Robust Fine-Tuning [23.027441849817922]
Contrastive Language-Image Pre-trained (CLIP) models have zero-shot ability of classifying an image belonging to "[CLASS]"
Fine-tuning of CLIP models improves accuracy but sacrifices the robustness on downstream tasks.
We propose Context-Aware Robust Fine-tuning (CAR-FT) to solve this problem.
arXiv Detail & Related papers (2022-11-29T13:07:41Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST) is a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images.
MUST improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification.
arXiv Detail & Related papers (2022-06-07T02:03:06Z) - CyCLIP: Cyclic Contrastive Language-Image Pretraining [34.588147979731374]
Recent advances in contrastive representation learning over paired image-text data have led to models such as CLIP that achieve state-of-the-art performance for zero-shot classification and distributional robustness.
We demonstrate that the image and text representations learned via a standard contrastive objective are not interchangeable and can lead to inconsistent downstream predictions.
We propose CyCLIP, a framework for contrastive representation learning that explicitly optimize for the learned representations to be geometrically consistent in the image and text space.
arXiv Detail & Related papers (2022-05-28T15:31:17Z) - ReCLIP: A Strong Zero-Shot Baseline for Referring Expression
Comprehension [114.85628613911713]
Large-scale pre-trained models are useful for image classification across domains.
We present ReCLIP, a simple but strong zero-shot baseline that repurposes CLIP, a state-of-the-art large-scale model, for ReC.
arXiv Detail & Related papers (2022-04-12T17:55:38Z) - No Token Left Behind: Explainability-Aided Image Classification and
Generation [79.4957965474334]
We present a novel explainability-based approach, which adds a loss term to ensure that CLIP focuses on all relevant semantic parts of the input.
Our method yields an improvement in the recognition rate, without additional training or fine-tuning.
arXiv Detail & Related papers (2022-04-11T07:16:39Z) - Robust Cross-Modal Representation Learning with Progressive
Self-Distillation [7.676408770854477]
The learning objective of vision-language approach of CLIP does not effectively account for the noisy many-to-many correspondences found in web-harvested image captioning datasets.
We introduce a novel training framework based on cross-modal contrastive learning that uses progressive self-distillation and soft image-text alignments to more efficiently learn robust representations from noisy data.
arXiv Detail & Related papers (2022-04-10T03:28:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.