Effortless Efficiency: Low-Cost Pruning of Diffusion Models
- URL: http://arxiv.org/abs/2412.02852v1
- Date: Tue, 03 Dec 2024 21:37:50 GMT
- Title: Effortless Efficiency: Low-Cost Pruning of Diffusion Models
- Authors: Yang Zhang, Er Jin, Yanfei Dong, Ashkan Khakzar, Philip Torr, Johannes Stegmaier, Kenji Kawaguchi,
- Abstract summary: We propose a model-agnostic structural pruning framework for diffusion models that learns a differentiable mask to sparsify the model.
To ensure effective pruning that preserves the quality of the final denoised latent, we design a novel end-to-end pruning objective that spans the entire diffusion process.
Results on state-of-the-art U-Net diffusion models SDXL and diffusion transformers (FLUX) demonstrate that our method can effectively prune up to 20% parameters with minimal perceptible performance degradation.
- Score: 29.821803522137913
- License:
- Abstract: Diffusion models have achieved impressive advancements in various vision tasks. However, these gains often rely on increasing model size, which escalates computational complexity and memory demands, complicating deployment, raising inference costs, and causing environmental impact. While some studies have explored pruning techniques to improve the memory efficiency of diffusion models, most existing methods require extensive retraining to retain the model performance. Retraining a modern large diffusion model is extremely costly and resource-intensive, which limits the practicality of these methods. In this work, we achieve low-cost diffusion pruning without retraining by proposing a model-agnostic structural pruning framework for diffusion models that learns a differentiable mask to sparsify the model. To ensure effective pruning that preserves the quality of the final denoised latent, we design a novel end-to-end pruning objective that spans the entire diffusion process. As end-to-end pruning is memory-intensive, we further propose time step gradient checkpointing, a technique that significantly reduces memory usage during optimization, enabling end-to-end pruning within a limited memory budget. Results on state-of-the-art U-Net diffusion models SDXL and diffusion transformers (FLUX) demonstrate that our method can effectively prune up to 20% parameters with minimal perceptible performance degradation, and notably, without the need for model retraining. We also showcase that our method can still prune on top of time step distilled diffusion models.
Related papers
- ResPanDiff: Diffusion Model for Pansharpening by Inferring Residual Inference [8.756657890124766]
We introduce a novel and efficient diffusion model named Diffusion Model for Pansharpening by Inferring Residual Inference (ResPanDiff)
ResPanDiff significantly reduces the number of diffusion steps without sacrificing the performance to tackle pansharpening task.
Our experiments demonstrate that the proposed method achieves superior outcomes compared to recent state-of-the-art(SOTA) techniques.
arXiv Detail & Related papers (2025-01-09T09:15:07Z) - Efficient Fine-Tuning and Concept Suppression for Pruned Diffusion Models [93.76814568163353]
We propose a novel bilevel optimization framework for pruned diffusion models.
This framework consolidates the fine-tuning and unlearning processes into a unified phase.
It is compatible with various pruning and concept unlearning methods.
arXiv Detail & Related papers (2024-12-19T19:13:18Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs [36.65594293655289]
DoSSR is a Domain Shift diffusion-based SR model that capitalizes on the generative powers of pretrained diffusion models.
At the core of our approach is a domain shift equation that integrates seamlessly with existing diffusion models.
Our proposed method achieves state-of-the-art performance on synthetic and real-world datasets, while notably requiring only 5 sampling steps.
arXiv Detail & Related papers (2024-09-26T12:16:11Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Fixed Point Diffusion Models [13.035518953879539]
Fixed Point Diffusion Model (FPDM) is a novel approach to image generation that integrates the concept of fixed point solving into the framework of diffusion-based generative modeling.
Our approach embeds an implicit fixed point solving layer into the denoising network of a diffusion model, transforming the diffusion process into a sequence of closely-related fixed point problems.
We conduct experiments with state-of-the-art models on ImageNet, FFHQ, CelebA-HQ, and LSUN-Church, demonstrating substantial improvements in performance and efficiency.
arXiv Detail & Related papers (2024-01-16T18:55:54Z) - Memory-Efficient Fine-Tuning for Quantized Diffusion Model [12.875837358532422]
We introduce TuneQDM, a memory-efficient fine-tuning method for quantized diffusion models.
Our method consistently outperforms the baseline in both single-/multi-subject generations.
arXiv Detail & Related papers (2024-01-09T03:42:08Z) - Structural Pruning for Diffusion Models [65.02607075556742]
We present Diff-Pruning, an efficient compression method tailored for learning lightweight diffusion models from pre-existing ones.
Our empirical assessment, undertaken across several datasets highlights two primary benefits of our proposed method.
arXiv Detail & Related papers (2023-05-18T12:38:21Z) - Restoration based Generative Models [0.886014926770622]
Denoising diffusion models (DDMs) have attracted increasing attention by showing impressive synthesis quality.
In this paper, we establish the interpretation of DDMs in terms of image restoration (IR)
We propose a multi-scale training, which improves the performance compared to the diffusion process, by taking advantage of the flexibility of the forward process.
We believe that our framework paves the way for designing a new type of flexible general generative model.
arXiv Detail & Related papers (2023-02-20T00:53:33Z) - Towards Practical Lipreading with Distilled and Efficient Models [57.41253104365274]
Lipreading has witnessed a lot of progress due to the resurgence of neural networks.
Recent works have placed emphasis on aspects such as improving performance by finding the optimal architecture or improving generalization.
There is still a significant gap between the current methodologies and the requirements for an effective deployment of lipreading in practical scenarios.
We propose a series of innovations that significantly bridge that gap: first, we raise the state-of-the-art performance by a wide margin on LRW and LRW-1000 to 88.5% and 46.6%, respectively using self-distillation.
arXiv Detail & Related papers (2020-07-13T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.