論文の概要: Unpaired Modality Translation for Pseudo Labeling of Histology Images
- arxiv url: http://arxiv.org/abs/2412.02858v1
- Date: Tue, 03 Dec 2024 21:45:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:09:15.908853
- Title: Unpaired Modality Translation for Pseudo Labeling of Histology Images
- Title(参考訳): 病理画像の擬似ラベリングにおける不適切なモダリティ翻訳
- Authors: Arthur Boschet, Armand Collin, Nishka Katoch, Julien Cohen-Adad,
- Abstract要約: 本稿では,この問題に対処するために,教師なし画像翻訳を利用した顕微鏡擬似ラベリングパイプラインを提案する。
本手法は,対象ドメインに事前アノテーションを必要とせず,ラベル付きドメインとラベルなしドメインを翻訳することで擬似ラベルを生成する。
- 参考スコア(独自算出の注目度): 0.5825410941577593
- License:
- Abstract: The segmentation of histological images is critical for various biomedical applications, yet the lack of annotated data presents a significant challenge. We propose a microscopy pseudo labeling pipeline utilizing unsupervised image translation to address this issue. Our method generates pseudo labels by translating between labeled and unlabeled domains without requiring prior annotation in the target domain. We evaluate two pseudo labeling strategies across three image domains increasingly dissimilar from the labeled data, demonstrating their effectiveness. Notably, our method achieves a mean Dice score of $0.736 \pm 0.005$ on a SEM dataset using the tutoring path, which involves training a segmentation model on synthetic data created by translating the labeled dataset (TEM) to the target modality (SEM). This approach aims to accelerate the annotation process by providing high-quality pseudo labels as a starting point for manual refinement.
- Abstract(参考訳): 組織像のセグメンテーションは様々なバイオメディカル応用に重要であるが、注釈データがないことは大きな課題である。
本稿では,この問題に対処するために,教師なし画像翻訳を利用した顕微鏡擬似ラベリングパイプラインを提案する。
本手法は,対象ドメインに事前アノテーションを必要とせず,ラベル付きドメインとラベルなしドメインを翻訳することで擬似ラベルを生成する。
3つの画像領域にまたがる2つの擬似ラベリング手法の評価を行い,その効果を実証した。
提案手法は,学習パスを用いたSEMデータセット上での平均Diceスコアが0.736 \pm 0.005$で,ラベル付きデータセット(TEM)を目標モダリティ(SEM)に変換することによって生成された合成データに対するセグメンテーションモデルをトレーニングする。
提案手法は,手動リファインメントの出発点として高品質な擬似ラベルを提供することにより,アノテーションプロセスの高速化を目的とする。
関連論文リスト
- GuidedNet: Semi-Supervised Multi-Organ Segmentation via Labeled Data Guide Unlabeled Data [4.775846640214768]
半監督型多臓器画像分割は、医師が疾患の診断と治療計画を改善するのに役立つ。
キーとなる概念は、ラベル付きデータとラベルなしデータからのボクセル機能は、同じクラスに属する可能性が高い機能空間で互いに近接しているということである。
我々は、ラベル付きデータから得られた事前知識を活用してラベルなしデータのトレーニングをガイドする知識伝達クロス擬似ラベルスーパービジョン(KT-CPS)戦略を導入する。
論文 参考訳(メタデータ) (2024-08-09T07:46:01Z) - Leveraging Fixed and Dynamic Pseudo-labels for Semi-supervised Medical Image Segmentation [7.9449756510822915]
半教師付き医用画像セグメンテーションは、注釈のないデータを利用する能力によって、関心が高まりつつある。
現在の最先端の手法は、主にコトレーニングフレームワーク内の擬似ラベルに依存している。
本稿では,同一の未注釈画像に対する複数の擬似ラベルを用いてラベルのないデータから学習する手法を提案する。
論文 参考訳(メタデータ) (2024-05-12T11:30:01Z) - GuidedMix-Net: Semi-supervised Semantic Segmentation by Using Labeled
Images as Reference [90.5402652758316]
半教師付きセマンティックセマンティックセグメンテーションのための新しい手法である GuidedMix-Net を提案する。
ラベル付き情報を使用して、ラベルなしのインスタンスの学習をガイドする。
競合セグメンテーションの精度を達成し、mIoUを以前のアプローチに比べて+7$%大きく改善する。
論文 参考訳(メタデータ) (2021-12-28T06:48:03Z) - Reference-guided Pseudo-Label Generation for Medical Semantic
Segmentation [25.76014072179711]
本稿では,半教師付きセマンティックセグメンテーションのための管理手法を提案する。
少数のラベル付き画像を参照材料として使用し、未ラベル画像中の画素と参照集合内の最適な画素のセマンティクスを一致させる。
我々は,X線解剖学的セグメンテーションにおける標準完全教師付きモデルと同じ性能を達成するが,ラベル付き画像の95%は少ない。
論文 参考訳(メタデータ) (2021-12-01T12:21:24Z) - Weakly Supervised Medical Image Segmentation [2.355970984550866]
スパースラベル付き画像を用いた数ショットセマンティックセマンティックセグメンテーションのための新しい手法を提案する。
メタテストでは,スパースラベルをメタトレーニングや高密度ラベルに使用することにより,スパースラベルから高密度ラベルを予測することができる。
論文 参考訳(メタデータ) (2021-08-12T00:15:47Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
半教師付きセマンティックセマンティックセグメンテーションのための新しい手法である GuidedMix-Net を提案する。
まず、ラベル付きデータとラベルなしデータの間に特徴アライメントの目的を導入し、類似した画像対をキャプチャする。
MITransは、ラベルなしデータのさらなるプログレッシブな精細化のための強力な知識モジュールであることが示されている。
ラベル付きデータに対する教師付き学習とともに、ラベル付きデータの予測が生成した擬似マスクとともに学習される。
論文 参考訳(メタデータ) (2021-06-29T02:48:45Z) - Pseudo Pixel-level Labeling for Images with Evolving Content [5.573543601558405]
画像の手動アノテーションの労力を削減するために,擬似ピクセルレベルのラベル生成手法を提案する。
VGGとResNetのバックボーンを用いた2つのセマンティックセグメンテーションモデルを、擬似ラベリング法と最先端手法を用いてラベル付けした画像上で学習する。
以上の結果から, トレーニングプロセスにおいて, 最先端手法を用いて生成したデータの代わりに擬似ラベルを用いることで, VGGおよびResNetに基づくセマンティックセマンティックセグメンテーションモデルの平均IoUと周波数重み付きIoUを3.36%, 2.58%, 10倍改善することがわかった。
論文 参考訳(メタデータ) (2021-05-20T18:14:19Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) Person Re-identification (ReID) は、ラベル付きソースドメインデータセットで訓練されたモデルを、さらなるアノテーションなしでターゲットドメインデータセットに適応することを目的としている。
最も成功したUDA-ReIDアプローチは、クラスタリングに基づく擬似ラベル予測と表現学習を組み合わせて、2つのステップを交互に実行する。
疑似ラベル予測と表現学習のオンラインインタラクションと相互促進を可能にするグループ認識ラベル転送(GLT)アルゴリズムを提案します。
論文 参考訳(メタデータ) (2021-03-23T07:57:39Z) - Semi-supervised Relation Extraction via Incremental Meta Self-Training [56.633441255756075]
半教師付き関係抽出法は,限られたサンプルからの学習に加え,ラベルのないデータを活用することを目的としている。
既存の自己学習手法は段階的なドリフト問題に悩まされ、未ラベルデータにノイズのある擬似ラベルが組み込まれている。
本稿では,リレーショナルラベル生成ネットワークが,メタオブジェクトとしてリレーショナル分類ネットワークを成功・失敗に導くことによって,擬似ラベルの品質評価を生成するメタSREという手法を提案する。
論文 参考訳(メタデータ) (2020-10-06T03:54:11Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain
Adaptation on Person Re-identification [56.97651712118167]
人物再識別(re-ID)は、異なるカメラで同一人物の画像を特定することを目的としている。
異なるデータセット間のドメインの多様性は、あるデータセットでトレーニングされたre-IDモデルを別のデータセットに適応させる上で、明らかな課題となる。
教師なしフレームワークであるMutual Mean-Teaching(MMT)を提案し、オフラインで改良されたハードな擬似ラベルとオンラインで改良されたソフトな擬似ラベルを用いて、ターゲットドメインからより良い特徴を学習する。
論文 参考訳(メタデータ) (2020-01-06T12:42:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。