論文の概要: Weakly Supervised Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2108.05476v1
- Date: Thu, 12 Aug 2021 00:15:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-14 02:45:45.187108
- Title: Weakly Supervised Medical Image Segmentation
- Title(参考訳): 医用画像分割の弱さ
- Authors: Pedro H. T. Gama, Hugo Oliveira and Jefersson A. dos Santos
- Abstract要約: スパースラベル付き画像を用いた数ショットセマンティックセマンティックセグメンテーションのための新しい手法を提案する。
メタテストでは,スパースラベルをメタトレーニングや高密度ラベルに使用することにより,スパースラベルから高密度ラベルを予測することができる。
- 参考スコア(独自算出の注目度): 2.355970984550866
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we propose a novel approach for few-shot semantic segmentation
with sparse labeled images. We investigate the effectiveness of our method,
which is based on the Model-Agnostic Meta-Learning (MAML) algorithm, in the
medical scenario, where the use of sparse labeling and few-shot can alleviate
the cost of producing new annotated datasets. Our method uses sparse labels in
the meta-training and dense labels in the meta-test, thus making the model
learn to predict dense labels from sparse ones. We conducted experiments with
four Chest X-Ray datasets to evaluate two types of annotations (grid and
points). The results show that our method is the most suitable when the target
domain highly differs from source domains, achieving Jaccard scores comparable
to dense labels, using less than 2% of the pixels of an image with labels in
few-shot scenarios.
- Abstract(参考訳): 本稿では,スパースラベル付き画像を用いた少数ショットセマンティックセマンティックセグメンテーションのための新しいアプローチを提案する。
医用シナリオにおいて, モデル非依存型メタラーニング(MAML)アルゴリズムに基づく手法の有効性について検討し, スパースラベリングと少数ショットを用いることで, 新たな注釈付きデータセットの作成コストを軽減できることを示す。
メタテストでは,スパースラベルをメタトレーニングや高密度ラベルに使用することにより,スパースラベルから高密度ラベルを予測することができる。
我々は4つのチェストX線データセットを用いて2種類のアノテーション(グリッドとポイント)を評価する実験を行った。
提案手法は,画像の2%未満の画素を用いて,高密度ラベルに匹敵するJaccardスコアを達成し,ターゲットドメインがソースドメインと大きく異なる場合に最も適していることを示す。
関連論文リスト
- Leveraging Fixed and Dynamic Pseudo-labels for Semi-supervised Medical Image Segmentation [7.9449756510822915]
半教師付き医用画像セグメンテーションは、注釈のないデータを利用する能力によって、関心が高まりつつある。
現在の最先端の手法は、主にコトレーニングフレームワーク内の擬似ラベルに依存している。
本稿では,同一の未注釈画像に対する複数の擬似ラベルを用いてラベルのないデータから学習する手法を提案する。
論文 参考訳(メタデータ) (2024-05-12T11:30:01Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
本稿では、CorrMatchと呼ばれる、単純だが実行可能な半教師付きセマンティックセマンティックセマンティックセマンティクス手法を提案する。
相関写像は、同一カテゴリのクラスタリングピクセルを容易に実現できるだけでなく、良好な形状情報も含んでいることを観察する。
我々は,高信頼画素を拡大し,さらに掘り出すために,画素の対の類似性をモデル化して画素伝搬を行う。
そして、相関地図から抽出した正確なクラス非依存マスクを用いて、領域伝搬を行い、擬似ラベルを強化する。
論文 参考訳(メタデータ) (2023-06-07T10:02:29Z) - Category-Adaptive Label Discovery and Noise Rejection for Multi-label
Image Recognition with Partial Positive Labels [78.88007892742438]
部分正ラベル(MLR-PPL)を用いたマルチラベルモデルの訓練が注目されている。
これまでの研究では、未知のラベルを負とみなし、従来のMLRアルゴリズムを採用した。
我々は,MLR-PPLタスクを容易にするために,異なる画像間の意味的相関について検討する。
論文 参考訳(メタデータ) (2022-11-15T02:11:20Z) - Reference-guided Pseudo-Label Generation for Medical Semantic
Segmentation [25.76014072179711]
本稿では,半教師付きセマンティックセグメンテーションのための管理手法を提案する。
少数のラベル付き画像を参照材料として使用し、未ラベル画像中の画素と参照集合内の最適な画素のセマンティクスを一致させる。
我々は,X線解剖学的セグメンテーションにおける標準完全教師付きモデルと同じ性能を達成するが,ラベル付き画像の95%は少ない。
論文 参考訳(メタデータ) (2021-12-01T12:21:24Z) - Multi-label Classification with Partial Annotations using Class-aware
Selective Loss [14.3159150577502]
大規模なマルチラベル分類データセットは、一般的に部分的に注釈付けされている。
部分的なラベリング問題を解析し、2つの重要なアイデアに基づいた解を提案する。
われわれの新しいアプローチにより、OpenImagesデータセット上で最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-21T08:10:55Z) - Multi-Layer Pseudo-Supervision for Histopathology Tissue Semantic
Segmentation using Patch-level Classification Labels [26.349051136954195]
本稿では,病理組織像の組織的セグメンテーションを実現するために,パッチレベルの分類ラベルのみを用いる。
画素レベルのアノテーションとパッチレベルのアノテーションの間の情報ギャップを減らすために、いくつかの技術革新が提案されている。
提案手法は, 最先端の2つのWSSS手法より優れている。
論文 参考訳(メタデータ) (2021-10-14T08:02:07Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
多数の画像の分類ラベルを収集するための効率的なアノテーション戦略を検討する。
人間のラベリング作業を最小化するための修正とベストプラクティスを提案します。
ImageNet100の125kイメージサブセットのシミュレーション実験では、平均で0.35のアノテーションで80%のトップ-1の精度でアノテートできることが示されている。
論文 参考訳(メタデータ) (2021-04-26T16:29:32Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search [90.30623718137244]
スケーラブルなマルチラベル画像検索のための新しいディープハッシュ法を提案する。
2つの空間の類似性順序を整列するために、新しい階数整合性目的を適用した。
強力な損失関数は、意味的類似性とハミング距離が一致しないサンプルをペナルティ化するように設計されている。
論文 参考訳(メタデータ) (2021-02-02T13:46:58Z) - Few-shot Learning for Multi-label Intent Detection [59.66787898744991]
State-of-the-art work estimates label-instancelevance scores and using threshold to select multiple associated intent labels。
2つのデータセットの実験により、提案モデルが1ショットと5ショットの両方の設定において強いベースラインを著しく上回ることが示された。
論文 参考訳(メタデータ) (2020-10-11T14:42:18Z) - Enhancing Few-Shot Image Classification with Unlabelled Examples [18.03136114355549]
画像分類性能を向上させるために,非ラベルインスタンスを用いたトランスダクティブなメタラーニング手法を開発した。
提案手法は,正規化ニューラルアダプティブ特徴抽出器を組み合わせることで,非ラベルデータを用いたテスト時間分類精度の向上を実現する。
論文 参考訳(メタデータ) (2020-06-17T05:42:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。