Unpaired Modality Translation for Pseudo Labeling of Histology Images
- URL: http://arxiv.org/abs/2412.02858v1
- Date: Tue, 03 Dec 2024 21:45:59 GMT
- Title: Unpaired Modality Translation for Pseudo Labeling of Histology Images
- Authors: Arthur Boschet, Armand Collin, Nishka Katoch, Julien Cohen-Adad,
- Abstract summary: We propose a microscopy pseudo labeling pipeline utilizing unsupervised image translation to address this issue.
Our method generates pseudo labels by translating between labeled and unlabeled domains without requiring prior annotation in the target domain.
- Score: 0.5825410941577593
- License:
- Abstract: The segmentation of histological images is critical for various biomedical applications, yet the lack of annotated data presents a significant challenge. We propose a microscopy pseudo labeling pipeline utilizing unsupervised image translation to address this issue. Our method generates pseudo labels by translating between labeled and unlabeled domains without requiring prior annotation in the target domain. We evaluate two pseudo labeling strategies across three image domains increasingly dissimilar from the labeled data, demonstrating their effectiveness. Notably, our method achieves a mean Dice score of $0.736 \pm 0.005$ on a SEM dataset using the tutoring path, which involves training a segmentation model on synthetic data created by translating the labeled dataset (TEM) to the target modality (SEM). This approach aims to accelerate the annotation process by providing high-quality pseudo labels as a starting point for manual refinement.
Related papers
- GuidedNet: Semi-Supervised Multi-Organ Segmentation via Labeled Data Guide Unlabeled Data [4.775846640214768]
Semi-supervised multi-organ medical image segmentation aids physicians in improving disease diagnosis and treatment planning.
A key concept is that voxel features from labeled and unlabeled data close each other in the feature space more likely to belong to the same class.
We introduce a Knowledge Transfer Cross Pseudo-label Supervision (KT-CPS) strategy, which leverages the prior knowledge obtained from the labeled data to guide the training of the unlabeled data.
arXiv Detail & Related papers (2024-08-09T07:46:01Z) - Leveraging Fixed and Dynamic Pseudo-labels for Semi-supervised Medical Image Segmentation [7.9449756510822915]
Semi-supervised medical image segmentation has gained growing interest due to its ability to utilize unannotated data.
The current state-of-the-art methods mostly rely on pseudo-labeling within a co-training framework.
We propose a novel approach where multiple pseudo-labels for the same unannotated image are used to learn from the unlabeled data.
arXiv Detail & Related papers (2024-05-12T11:30:01Z) - GuidedMix-Net: Semi-supervised Semantic Segmentation by Using Labeled
Images as Reference [90.5402652758316]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
It uses labeled information to guide the learning of unlabeled instances.
It achieves competitive segmentation accuracy and significantly improves the mIoU by +7$%$ compared to previous approaches.
arXiv Detail & Related papers (2021-12-28T06:48:03Z) - Reference-guided Pseudo-Label Generation for Medical Semantic
Segmentation [25.76014072179711]
We propose a novel approach to generate supervision for semi-supervised semantic segmentation.
We use a small number of labeled images as reference material and match pixels in an unlabeled image to the semantics of the best fitting pixel in a reference set.
We achieve the same performance as a standard fully supervised model on X-ray anatomy segmentation, albeit 95% fewer labeled images.
arXiv Detail & Related papers (2021-12-01T12:21:24Z) - Weakly Supervised Medical Image Segmentation [2.355970984550866]
We propose a novel approach for few-shot semantic segmentation with sparse labeled images.
We use sparse labels in the meta-training and dense labels in the meta-test, thus making the model learn to predict dense labels from sparse ones.
arXiv Detail & Related papers (2021-08-12T00:15:47Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
We first introduce a feature alignment objective between labeled and unlabeled data to capture potentially similar image pairs.
MITrans is shown to be a powerful knowledge module for further progressive refining features of unlabeled data.
Along with supervised learning for labeled data, the prediction of unlabeled data is jointly learned with the generated pseudo masks.
arXiv Detail & Related papers (2021-06-29T02:48:45Z) - Pseudo Pixel-level Labeling for Images with Evolving Content [5.573543601558405]
We propose a pseudo-pixel-level label generation technique to reduce the amount of effort for manual annotation of images.
We train two semantic segmentation models with VGG and ResNet backbones on images labeled using our pseudo labeling method and those of a state-of-the-art method.
The results indicate that using our pseudo-labels instead of those generated using the state-of-the-art method in the training process improves the mean-IoU and the frequency-weighted-IoU of the VGG and ResNet-based semantic segmentation models by 3.36%, 2.58%, 10
arXiv Detail & Related papers (2021-05-20T18:14:19Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations.
Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion.
We propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning.
arXiv Detail & Related papers (2021-03-23T07:57:39Z) - Semi-supervised Relation Extraction via Incremental Meta Self-Training [56.633441255756075]
Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples.
Existing self-training methods suffer from the gradual drift problem, where noisy pseudo labels on unlabeled data are incorporated during training.
We propose a method called MetaSRE, where a Relation Label Generation Network generates quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective.
arXiv Detail & Related papers (2020-10-06T03:54:11Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z) - Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain
Adaptation on Person Re-identification [56.97651712118167]
Person re-identification (re-ID) aims at identifying the same persons' images across different cameras.
domain diversities between different datasets pose an evident challenge for adapting the re-ID model trained on one dataset to another one.
We propose an unsupervised framework, Mutual Mean-Teaching (MMT), to learn better features from the target domain via off-line refined hard pseudo labels and on-line refined soft pseudo labels.
arXiv Detail & Related papers (2020-01-06T12:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.