論文の概要: Out-of-Distribution Detection for Neurosymbolic Autonomous Cyber Agents
- arxiv url: http://arxiv.org/abs/2412.02875v1
- Date: Tue, 03 Dec 2024 22:20:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:10:00.951574
- Title: Out-of-Distribution Detection for Neurosymbolic Autonomous Cyber Agents
- Title(参考訳): ニューロシンボリック自律型サイバーエージェントのアウト・オブ・ディストリビューション検出
- Authors: Ankita Samaddar, Nicholas Potteiger, Xenofon Koutsoukos,
- Abstract要約: 本研究では,確率的ニューラルネットワーク(PNN)を用いて異常状況を検出するOODモニタリングアルゴリズムを開発した。
我々は,OODモニタリングアルゴリズムを,学習可能なコンポーネントを用いた行動木を用いたニューロシンボリックな自律サイバーエージェントと統合する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Autonomous agents for cyber applications take advantage of modern defense techniques by adopting intelligent agents with conventional and learning-enabled components. These intelligent agents are trained via reinforcement learning (RL) algorithms, and can learn, adapt to, reason about and deploy security rules to defend networked computer systems while maintaining critical operational workflows. However, the knowledge available during training about the state of the operational network and its environment may be limited. The agents should be trustworthy so that they can reliably detect situations they cannot handle, and hand them over to cyber experts. In this work, we develop an out-of-distribution (OOD) Monitoring algorithm that uses a Probabilistic Neural Network (PNN) to detect anomalous or OOD situations of RL-based agents with discrete states and discrete actions. To demonstrate the effectiveness of the proposed approach, we integrate the OOD monitoring algorithm with a neurosymbolic autonomous cyber agent that uses behavior trees with learning-enabled components. We evaluate the proposed approach in a simulated cyber environment under different adversarial strategies. Experimental results over a large number of episodes illustrate the overall efficiency of our proposed approach.
- Abstract(参考訳): サイバーアプリケーションのための自律エージェントは、従来の学習可能なコンポーネントにインテリジェントエージェントを採用することによって、現代的な防御技術を活用する。
これらのインテリジェントエージェントは強化学習(RL)アルゴリズムを通じてトレーニングされ、重要な運用ワークフローを維持しながら、ネットワーク化されたコンピュータシステムを保護するためのセキュリティルールを学習、適用、推論、デプロイすることができる。
しかし、運用ネットワークの状態とその環境に関するトレーニング中に利用可能な知識は限られている可能性がある。
エージェントは、彼らが対処できない状況を確実に検出し、それらをサイバー専門家に渡せるように信頼できるものにすべきである。
本研究では、確率的ニューラルネットワーク(PNN)を用いて、離散状態と離散動作を持つRL系エージェントの異常またはOOD状況を検出するOODモニタリングアルゴリズムを開発する。
提案手法の有効性を実証するため,我々はOODモニタリングアルゴリズムを,学習可能なコンポーネントを用いた行動木を用いたニューロシンボリック自律サイバーエージェントに統合した。
我々は,異なる敵の戦略の下で,シミュレーションされたサイバー環境における提案手法の評価を行った。
多数のエピソードにまたがる実験結果から,提案手法の全体的効率が示唆された。
関連論文リスト
- Designing Robust Cyber-Defense Agents with Evolving Behavior Trees [0.0]
本研究では,学習可能なコンポーネントを用いた行動木を用いた自律型サイバー防御エージェントの設計手法を開発する。
学習可能なコンポーネントは、様々なサイバー攻撃に適応し、セキュリティメカニズムをデプロイするために最適化されている。
EBTをベースとしたエージェントは、適応型サイバー攻撃に対して堅牢であり、その決定と行動の解釈に高レベルな説明を提供する。
論文 参考訳(メタデータ) (2024-10-21T18:00:38Z) - Building Hybrid B-Spline And Neural Network Operators [0.0]
制御システムはサイバー物理システム(CPS)の安全性を確保するために不可欠である
本稿では,B-スプラインの帰納バイアスとデータ駆動型ニューラルネットワークを組み合わせることで,CPS行動のリアルタイム予測を容易にする手法を提案する。
論文 参考訳(メタデータ) (2024-06-06T21:54:59Z) - Learning Cyber Defence Tactics from Scratch with Multi-Agent
Reinforcement Learning [4.796742432333795]
コンピュータネットワーク防衛の役割における知的エージェントのチームは、サイバーおよび運動的資産を保護するための有望な道を明らかにする可能性がある。
エージェントは、ホストベースの防衛シナリオにおける攻撃活動を共同で緩和する能力に基づいて評価される。
論文 参考訳(メタデータ) (2023-08-25T14:07:50Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Deep hierarchical reinforcement agents for automated penetration testing [0.0]
本稿では,階層構造を持つHA-DRLを用いた新しい深層強化学習アーキテクチャを提案する。
提案アーキテクチャは,従来の深層学習エージェントよりも高速かつ安定に最適な攻撃策を見出すことができる。
論文 参考訳(メタデータ) (2021-09-14T05:28:22Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
recurrent meta reinforcement learning (meta-rl)エージェントは「学習アルゴリズムの学習」を目的としてrecurrent neural network (rnn)を使用するエージェントである。
部分観測可能なマルコフ決定プロセス(POMDP)フレームワークを用いてメタRL問題を再構成することにより,これらのエージェントの内部動作機構を明らかにする。
論文 参考訳(メタデータ) (2021-04-29T20:34:39Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
論理ニューラルネットワーク(LNN)と呼ばれる最近のニューラルシンボリックフレームワークは、ニューラルネットワークとシンボリックロジックの両方のキープロパティを同時に提供することができる。
外部知識ソースからのモデルフリー強化学習を可能にする統合手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T12:34:59Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Detection of Insider Attacks in Distributed Projected Subgradient
Algorithms [11.096339082411882]
汎用ニューラルネットワークは悪質なエージェントの検出とローカライズに特に適していることを示す。
本稿では,連合学習における最先端のアプローチ,すなわち協調型ピアツーピア機械学習プロトコルを採用することを提案する。
シミュレーションでは,AIに基づく手法の有効性と有効性を検証するために,最小二乗問題を考える。
論文 参考訳(メタデータ) (2021-01-18T08:01:06Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。