論文の概要: Deep hierarchical reinforcement agents for automated penetration testing
- arxiv url: http://arxiv.org/abs/2109.06449v1
- Date: Tue, 14 Sep 2021 05:28:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-15 15:47:50.806565
- Title: Deep hierarchical reinforcement agents for automated penetration testing
- Title(参考訳): 自動浸透試験のための深層構造強化剤
- Authors: Khuong Tran (1), Ashlesha Akella (1), Maxwell Standen (2), Junae Kim
(2), David Bowman (2), Toby Richer (2), Chin-Teng Lin (1) ((1) Institution
One, (2) Institution Two)
- Abstract要約: 本稿では,階層構造を持つHA-DRLを用いた新しい深層強化学習アーキテクチャを提案する。
提案アーキテクチャは,従来の深層学習エージェントよりも高速かつ安定に最適な攻撃策を見出すことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Penetration testing the organised attack of a computer system in order to
test existing defences has been used extensively to evaluate network security.
This is a time consuming process and requires in-depth knowledge for the
establishment of a strategy that resembles a real cyber-attack. This paper
presents a novel deep reinforcement learning architecture with hierarchically
structured agents called HA-DRL, which employs an algebraic action
decomposition strategy to address the large discrete action space of an
autonomous penetration testing simulator where the number of actions is
exponentially increased with the complexity of the designed cybersecurity
network. The proposed architecture is shown to find the optimal attacking
policy faster and more stably than a conventional deep Q-learning agent which
is commonly used as a method to apply artificial intelligence in automatic
penetration testing.
- Abstract(参考訳): 侵入テスト 既存の防御をテストするためにコンピュータシステムの組織的な攻撃は、ネットワークセキュリティを評価するために広く使われている。
これは時間を要するプロセスであり、真のサイバー攻撃に似た戦略の確立には深い知識を必要とする。
本稿では,ha-drlと呼ばれる階層構造エージェントを用いた新しい深層強化学習アーキテクチャを提案する。ha-drlは,設計したサイバーセキュリティネットワークの複雑さにより行動数が指数関数的に増加する自律的浸透テストシミュレータの大規模離散的行動空間に対処するために,代数的行動分解戦略を用いる。
提案するアーキテクチャは,人工知能を自動浸透試験に応用する方法として広く用いられている,従来のディープq学習エージェントよりも高速かつ安定的に最適な攻撃方針を見出した。
関連論文リスト
- Auto-RT: Automatic Jailbreak Strategy Exploration for Red-Teaming Large Language Models [62.12822290276912]
Auto-RTは、複雑な攻撃戦略を探索し最適化する強化学習フレームワークである。
探索効率を大幅に改善し、攻撃戦略を自動的に最適化することにより、Auto-RTはボーダの脆弱性範囲を検出し、検出速度が速く、既存の方法と比較して16.63%高い成功率を達成する。
論文 参考訳(メタデータ) (2025-01-03T14:30:14Z) - Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense [7.967738380932909]
本稿では,サイバー防御タスクをネットワーク調査やホストリカバリといった特定のサブタスクに分解する階層的PPOアーキテクチャを提案する。
我々のアプローチは、ドメインの専門知識が強化されたPPOを使用して、各サブタスクのサブ政治を訓練することである。
これらのサブ政治は、複雑なネットワーク防御タスクを解決するためにそれらの選択を調整するマスターディフェンスポリシーによって活用される。
論文 参考訳(メタデータ) (2024-10-22T18:35:05Z) - From Sands to Mansions: Simulating Full Attack Chain with LLM-Organized Knowledge [10.065241604400223]
マルチステージ攻撃シミュレーションはシステム評価効率を高めるための有望なアプローチを提供する。
完全なアタックチェーンをシミュレートするのは複雑で、セキュリティ専門家からはかなりの時間と専門知識が必要です。
我々は、外部攻撃ツールと脅威情報レポートに基づいて、完全な攻撃チェーンを自律的にシミュレートするシステムであるAuroraを紹介する。
論文 参考訳(メタデータ) (2024-07-24T01:33:57Z) - Leveraging Reinforcement Learning in Red Teaming for Advanced Ransomware Attack Simulations [7.361316528368866]
本稿では,ランサムウェア攻撃のシミュレーションに強化学習(RL)を利用する新しい手法を提案する。
実世界のネットワークを模倣するシミュレーション環境でRLエージェントを訓練することにより、効果的な攻撃戦略を迅速に学習することができる。
152ホストのサンプルネットワークの実験結果から,提案手法の有効性が確認された。
論文 参考訳(メタデータ) (2024-06-25T14:16:40Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
本稿では,CNN,Recurrent Neural Networks(RNN),Deep Belief Networks(DBN),Deep Neural Networks(DNN),Long Short-Term Memory(LSTM),Autoencoders(AE),Multi-Layer Perceptrons(MLP),Self-Normalizing Networks(SNN),Hybrid Model(ネットワーク侵入検知システム)など,近年のディープラーニング技術の進歩について述べる。
論文 参考訳(メタデータ) (2024-02-26T20:57:35Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Towards Adversarial Realism and Robust Learning for IoT Intrusion
Detection and Classification [0.0]
IoT(Internet of Things)は、重大なセキュリティ上の課題に直面している。
敵の攻撃による脅威の増大は、信頼できる防衛戦略の必要性を回復させる。
本研究は、敵のサイバー攻撃事例が現実的であるために必要な制約の種類について述べる。
論文 参考訳(メタデータ) (2023-01-30T18:00:28Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。