Birthmarks: Ergodicity Breaking Beyond Quantum Scars
- URL: http://arxiv.org/abs/2412.02982v1
- Date: Wed, 04 Dec 2024 02:49:15 GMT
- Title: Birthmarks: Ergodicity Breaking Beyond Quantum Scars
- Authors: Anton M. Graf, Joonas Keski-Rahkonen, Mingxuan Xiao, Saul Atwood, Zhongling Lu, Siyuan Chen, Eric J. Heller,
- Abstract summary: In quantum versions of the same systems, classical ergodic traits can be broken.<n>We show that the birth and early evolution of a nonstationary state is remembered forever in infinite time averages.<n>We also visualize scar-amplified QBs unveiled within the time-averaged probability density of a wavepacket in a stadium system.
- Score: 5.8754414881557455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One manifestation of classical ergodicity is a complete loss of memory of the initial conditions due to the eventual uniform exploration of phase space. In quantum versions of the same systems, classical ergodic traits can be broken. Here, we extend the concept of quantum scars in new directions, more focused on ergodicity and infinite time averages than individual eigenstates. We specifically establish a union of short and long-term enhancements in terms of a \emph{quantum birthmark} (QB). Subsequently, we show (1) that the birth and early evolution of a nonstationary state is remembered forever in infinite time averages, and (2) that early recurrences in the autocorrelation function inevitably lead to nonergodic flow over infinite times. We recount here that phase space cannot be explored ergodically if there are early recurrences (well before the Heisenberg time) in the autocorrelation of the initial nonstationary quantum state. Employing random matrix theory, we show that QB extends beyond individual states to entire subspaces or ``{\it birthplaces}" in Hilbert space. Finally, we visualize scar-amplified QBs unveiled within the time-averaged probability density of a wavepacket in a stadium system. By transcending the quantum scarring, QB delivers a new paradigm for understanding the elusive quantum nature of ergodicity.
Related papers
- Magnetic Memory and Hysteresis from Quantum Transitions: Theory and Experiments on Quantum Annealers [0.6990493129893112]
We present a conceptual framework that explains the observed behavior by combining two-level-Zener transitions via a first-order piecewise- propagator with semiclassical domain-wall kinetics.<n>Our framework reproduces the measured densities, loops, shapes, and longitudinal sweep-rate scaling trends observed data from three different D-Wave annealers.<n>These results establish programmable quantum annealers as powerful testbeds for exploring memory-endowed non-equilibrium dynamics in quantumbody systems.
arXiv Detail & Related papers (2025-07-24T04:03:04Z) - Emergence of cosmic structure from Planckian discreteness [47.03992469282679]
In the standard paradigm the inhomogeneities observed in the CMB arise from quantum fluctuations of an initially homogeneous and isotropic vacuum state.<n>We propose an alternative paradigm in which such inhomogeneities are present from the very beginning.<n>Specifically, inhomogeneities in the quantum state at the Planck scale propagate into semiclassical inhomogeneities on CMB scales.
arXiv Detail & Related papers (2025-06-18T12:33:31Z) - Observation of Quantum Darwinism and the Origin of Classicality with Superconducting Circuits [9.09683951826704]
How can we rationalize everyday classical observations from an inherently quantum world?<n>Quantum Darwinism offers a compelling framework to explain this emergence of classicality.<n>We observe the highly structured branching quantum states that support classicality and the saturation of quantum mutual information.
arXiv Detail & Related papers (2025-04-01T13:33:32Z) - Origin of time and probability in quantum cosmology [0.0]
We discuss how the classical notions of time and causal structure may emerge together with quantum-mechanical probabilities from a universal quantum state.<n>Our discussion is based on quantum geometrodynamics, a canonical approach to quantum gravity.
arXiv Detail & Related papers (2025-03-13T18:00:01Z) - Direct Visualization of Relativistic Quantum Scars [0.15937412565239586]
Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits (POs)
First predicted 40 years ago, scars are special eigenstates that defy ergodicity in quantum systems whose classical counterpart is chaotic.
arXiv Detail & Related papers (2024-09-16T19:18:48Z) - Quantum scars in many-body systems [28.32223907511862]
We show that quantum mechanics hinders chaos in many-body systems.
Although the quantum eigenstates are thermal and strongly entangled, exponentially many of them are scarred.
Scarring makes the system more likely to be found on an orbit it was on, retaining a memory of its past and thus weakly breaking ergodicity.
arXiv Detail & Related papers (2024-08-19T18:00:00Z) - Antiscarring in Chaotic Quantum Wells [0.0]
We study the scarring of a single-particle wavefunction, where the quantum probability density is enhanced in the vicinity of a classical periodic orbit.
These quantum scars illustrate the quantum suppression of classical chaos, offering a unique way to explore the classical-quantum relationship beyond conventional limits.
arXiv Detail & Related papers (2024-03-26T20:06:00Z) - Quantum many-body scars from unstable periodic orbits [30.38539960317671]
Unstable periodic orbits play a key role in the theory of chaos.
We find the first quantum many-body scars originating from UPOs of a chaotic phase space.
arXiv Detail & Related papers (2024-01-12T19:00:02Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Optimal bounds on the speed of subspace evolution [77.34726150561087]
In contrast to the basic Mandelstam-Tamm inequality, we are concerned with a subspace subject to the Schroedinger evolution.
By using the concept of maximal angle between subspaces we derive optimal bounds on the speed of such a subspace evolution.
These bounds may be viewed as further generalizations of the Mandelstam-Tamm inequality.
arXiv Detail & Related papers (2021-11-10T13:32:15Z) - Weighted Bures Length Uncovers Quantum State Sensitivity [0.0]
Unitarity of quantum evolutions implies that the overlap between two initial states does not change in time.
We numerically study a cellular automaton-like unitary evolution of N qubits, known as Rule 54, and apply WBL to show that a single-qubit perturbation of a random initial state appears to grow exponentially in time.
arXiv Detail & Related papers (2021-06-26T20:06:30Z) - Preserving quantum correlations and coherence with non-Markovianity [50.591267188664666]
We demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems.
For covariant qubit evolutions, we show that non-Markovianity can be used to preserve quantum coherence at all times.
arXiv Detail & Related papers (2021-06-25T11:52:51Z) - Classicalization of Quantum Fluctuations at the Planck Scale in the
R_h=ct Universe [0.0]
New developments in the analysis of the most recent Planck data suggest that the primordial power spectrum has a cutoff associated with the first quantum fluctuation.
We demonstrate that the birth of quantum fluctuations at the Planck scale would have been a process' supplanting the need for a measurement' in quantum mechanics.
arXiv Detail & Related papers (2021-05-10T15:13:50Z) - Orthogonal Quantum Many-body Scars [0.41998444721319206]
Quantum many-body scars have been put forward as counterexamples to the Eigenstate Thermalization Hypothesis.
Our example provides new insights into the link between quantum ergodicity and many-body entanglement.
arXiv Detail & Related papers (2021-02-15T16:59:35Z) - Quantum speed limits for time evolution of a system subspace [77.34726150561087]
In the present work, we are concerned not with a single state but with a whole (possibly infinite-dimensional) subspace of the system states that are subject to the Schroedinger evolution.
We derive an optimal estimate on the speed of such a subspace evolution that may be viewed as a natural generalization of the Fleming bound.
arXiv Detail & Related papers (2020-11-05T12:13:18Z) - Ubiquitous quantum scarring does not prevent ergodicity [0.0]
In a classically chaotic system that is ergodic, any trajectory will be arbitrarily close to any point of the available phase space after a long time.
This simplified picture was shaken by the discovery of quantum scarring.
Our results show instead that all eigenstates of the chaotic Dicke model are actually scarred.
arXiv Detail & Related papers (2020-09-01T18:00:30Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Probabilistic Hysteresis from a Quantum Phase Space Perspective [0.0]
emphProbabilistic is a manifestation of cyclic irreversibility in a small, isolated classical system.
We show that classical ergodization can lead to a breakdown of quantum-classical correspondence.
arXiv Detail & Related papers (2020-05-31T15:40:55Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.