Topological Trajectory Classification and Landmark Inference on Simplicial Complexes
- URL: http://arxiv.org/abs/2412.03145v1
- Date: Wed, 04 Dec 2024 09:11:33 GMT
- Title: Topological Trajectory Classification and Landmark Inference on Simplicial Complexes
- Authors: Vincent P. Grande, Josef Hoppe, Florian Frantzen, Michael T. Schaub,
- Abstract summary: We consider the problem of classifying trajectories on a discretised 2-dimensional manifold modelled by a simplicial complex.
We present an algorithm that aims to learn "optimal holes" to distinguish a set of given trajectory classes.
- Score: 5.03315505352304
- License:
- Abstract: We consider the problem of classifying trajectories on a discrete or discretised 2-dimensional manifold modelled by a simplicial complex. Previous works have proposed to project the trajectories into the harmonic eigenspace of the Hodge Laplacian, and then cluster the resulting embeddings. However, if the considered space has vanishing homology (i.e., no "holes"), then the harmonic space of the 1-Hodge Laplacian is trivial and thus the approach fails. Here we propose to view this issue akin to a sensor placement problem and present an algorithm that aims to learn "optimal holes" to distinguish a set of given trajectory classes. Specifically, given a set of labelled trajectories, which we interpret as edge-flows on the underlying simplicial complex, we search for 2-simplices whose deletion results in an optimal separation of the trajectory labels according to the corresponding spectral embedding of the trajectories into the harmonic space. Finally, we generalise this approach to the unsupervised setting.
Related papers
- Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
Learning disentangled representations from unlabelled data is a fundamental challenge in machine learning.
We introduce a novel approach to disentangled representation learning based on quadratic optimal transport.
We demonstrate the effectiveness of our approach for quantifying disentanglement across four standard benchmarks.
arXiv Detail & Related papers (2024-07-10T16:51:32Z) - Horoballs and the subgradient method [0.0]
We consider convex optimization on Hadamard spaces in the style of a subgradient algorithm.
Our iteration applies in a general Hadamard space, is framed in the underlying space itself, and relies on horospherical convexity of the objective level sets.
We illustrate our subgradient algorithm on the minimal enclosing ball problem in Hadamard spaces.
arXiv Detail & Related papers (2024-03-23T07:34:18Z) - Semi-Supervised Laplace Learning on Stiefel Manifolds [48.3427853588646]
We develop the framework Sequential Subspace for graph-based, supervised samples at low-label rates.
We achieves that our methods at extremely low rates, and high label rates.
arXiv Detail & Related papers (2023-07-31T20:19:36Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Outlier Detection for Trajectories via Flow-embeddings [2.66418345185993]
We propose a method to detect outliers in empirically observed trajectories on a discretized manifold modeled by a simplicial complex.
Our approach is similar to spectral embeddings such as diffusion-maps and Laplacian eigenmaps, that construct embeddings from the eigenvectors of the graph Laplacian associated with low eigenvalues.
We show how this technique can single out trajectories that behave (topologically) different compared to typical trajectories, and illustrate the performance of our approach with both synthetic and empirical data.
arXiv Detail & Related papers (2021-11-25T19:58:48Z) - The decomposition of the higher-order homology embedding constructed
from the $k$-Laplacian [5.076419064097734]
The null space of the $k$-th order Laplacian $mathbfmathcal L_k$ encodes the non-trivial topology of a manifold or a network.
We propose an algorithm to factorize the homology embedding into subspaces corresponding to a manifold's simplest topological components.
arXiv Detail & Related papers (2021-07-23T00:40:01Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
We show that a piecewise discretization preserves better contrast from existing discretization problems.
We apply this theory to the problem of matching two images.
arXiv Detail & Related papers (2021-07-13T12:31:06Z) - Partition-Guided GANs [63.980473635585234]
We design a partitioner that breaks the space into smaller regions, each having a simpler distribution, and training a different generator for each partition.
This is done in an unsupervised manner without requiring any labels.
Experimental results on various standard benchmarks show that the proposed unsupervised model outperforms several recent methods.
arXiv Detail & Related papers (2021-04-02T00:06:53Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z) - Manifold Fitting under Unbounded Noise [4.54773250519101]
We introduce a new manifold-fitting method, by which the output manifold is constructed by directly estimating the tangent spaces at the projected points on the underlying manifold.
Our new method provides theoretical convergence in high probability, in terms of the upper bound of the distance between the estimated and underlying manifold.
arXiv Detail & Related papers (2019-09-23T08:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.