論文の概要: Grounded Language Design for Lightweight Diagramming for Formal Methods
- arxiv url: http://arxiv.org/abs/2412.03310v1
- Date: Wed, 04 Dec 2024 13:37:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:07:32.321607
- Title: Grounded Language Design for Lightweight Diagramming for Formal Methods
- Title(参考訳): 定式化のための軽量ダイアグラムのための接地言語設計
- Authors: Siddhartha Prasad, Ben Greenman, Tim Nelson, Shriram Krishnamurthi,
- Abstract要約: 軽量なダイアグラム作成のための重要なドメイン情報をキャプチャする言語を開発する。
軽量なダイアグラムの重要な要素を小さなプリミティブのセットに蒸留する。
生成した図の有効性を評価し,推論に適していることを確認した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Model finding, as embodied by SAT solvers and similar tools, is used widely, both in embedding settings and as a tool in its own right. For instance, tools like Alloy target SAT to enable users to incrementally define, explore, verify, and diagnose sophisticated specifications for a large number of complex systems. These tools critically include a visualizer that lets users graphically explore these generated models. As we show, however, default visualizers, which know nothing about the domain, are unhelpful and even actively violate presentational and cognitive principles. At the other extreme, full-blown visualizations require significant effort as well as knowledge a specifier might not possess; they can also exhibit bad failure modes (including silent failure). Instead, we need a language to capture essential domain information for lightweight diagramming. We ground our language design in both the cognitive science literature on diagrams and on a large number of example custom visualizations. This identifies the key elements of lightweight diagrams. We distill these into a small set of orthogonal primitives. We extend an Alloy-like tool to support these primitives. We evaluate the effectiveness of the produced diagrams, finding them good for reasoning. We then compare this against many other drawing languages and tools to show that this work defines a new niche that is lightweight, effective, and driven by sound principles.
- Abstract(参考訳): SATソルバやその他のツールによって具現化されているモデル探索は、組み込み設定や独自のツールとして広く使われている。
例えば、AlphaなどのツールはSATをターゲットにしており、ユーザーは多数の複雑なシステムの高度な仕様を段階的に定義し、調査し、検証し、診断することができる。
これらのツールには、ユーザが生成したモデルをグラフィカルに探索できるビジュアライザが含まれている。
しかし、私たちが示すように、ドメインについて何も知らないデフォルトのビジュアライザは不便で、プレゼンテーションや認知の原則に積極的に違反しています。
もう1つの極端な場合、完全な可視化にはかなりの労力と特定者が持っていない可能性のある知識が必要であり、悪い障害モード(サイレント障害を含む)を示すこともできる。
代わりに、軽量なダイアグラム作成に不可欠なドメイン情報をキャプチャする言語が必要です。
言語設計は、ダイアグラムと多数のカスタム視覚化の例に基づいて認知科学文学の両方に基礎を置いています。
これは軽量なダイアグラムの重要な要素を特定します。
これを小さな直交プリミティブの集合に蒸留する。
これらのプリミティブをサポートするために、アロイのようなツールを拡張します。
生成した図の有効性を評価し,推論に適していることを確認した。
そして、これを他の多くの描画言語やツールと比較して、この作業が軽量で効果的で、音の原理によって駆動される新しいニッチを定義することを示す。
関連論文リスト
- Griffon v2: Advancing Multimodal Perception with High-Resolution Scaling and Visual-Language Co-Referring [27.45225442048711]
我々は、視覚的およびテキスト的プロンプトによるフレキシブルなオブジェクト参照を可能にする、統合された高分解能一般化モデル、Griffon v2を導入する。
我々は,大規模言語モデルにおける入力トークン制約を克服するために,シンプルで軽量なダウンサンプリングプロジェクタを設計する。
実験により、Griffon v2は、視覚的およびテキスト的参照で関心のあるオブジェクトをローカライズし、REC、フレーズグラウンド、REGタスクにおける最先端のパフォーマンスを実現し、オブジェクト検出とオブジェクトカウントのエキスパートモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T12:21:37Z) - CONCORD: Towards a DSL for Configurable Graph Code Representation [3.756550107432323]
カスタマイズ可能なグラフ表現を構築するためのドメイン固有言語であるCONCORDを紹介する。
実例として,コードの臭い検出に有効であることを示す。
ConCORDは、研究者がカスタマイズ可能なグラフベースのコード表現を作成し、実験するのに役立つ。
論文 参考訳(メタデータ) (2024-01-31T16:16:48Z) - Less is More: A Closer Look at Semantic-based Few-Shot Learning [11.724194320966959]
Few-shot Learningは、利用可能な画像の数が非常に限られている新しいカテゴリを学習し、区別することを目的としている。
本稿では,テキスト情報と言語モデルを活用することを目的とした,数ショットの学習タスクのための,シンプルだが効果的なフレームワークを提案する。
広範に使われている4つのショットデータセットで実施した実験は、我々の単純なフレームワークが印象的な結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-01-10T08:56:02Z) - GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot
Attention for Vision-and-Language Navigation [52.65506307440127]
我々は,ロバストなビジュアル・アンド・ランゲージナビゲーションのためのスロットアテンションに基づく幾何学的視覚表現を学習するGeoVLNを提案する。
我々はV&L BERTを用いて言語情報と視覚情報の両方を組み込んだクロスモーダル表現を学習する。
論文 参考訳(メタデータ) (2023-05-26T17:15:22Z) - What does CLIP know about a red circle? Visual prompt engineering for
VLMs [116.8806079598019]
テキストの代わりに画像空間を編集することで、分類を超えたコンピュータビジョンタスクを解くための視覚的プロンプトエンジニアリングのアイデアを探求する。
キーポイントのローカライゼーションタスクにおけるゼロショット参照表現の理解と強力な性能を両立させることにより,このシンプルなアプローチのパワーを示す。
論文 参考訳(メタデータ) (2023-04-13T17:58:08Z) - Toolformer: Language Models Can Teach Themselves to Use Tools [62.04867424598204]
言語モデル(LM)は、特に大規模において、いくつかの例やテキスト命令から新しいタスクを解く素晴らしい能力を示す。
LMは、シンプルなAPIを通じて外部ツールの使用を自覚し、両方の世界のベストを達成できることを示します。
Toolformerは、どのAPIを呼び出すか、いつ呼び出すか、どの引数を渡すか、結果を将来のトークン予測に最もうまく組み込む方法を訓練したモデルです。
論文 参考訳(メタデータ) (2023-02-09T16:49:57Z) - Exploring External Knowledge for Accurate modeling of Visual and
Language Problems [2.7190267444272056]
この論文は、多くの困難なタスクを含む視覚的および言語的理解に焦点を当てている。
これらの問題を解決する最先端の手法は通常、ソースデータとターゲットラベルの2つの部分のみを含む。
まず外部知識を抽出し,元のモデルと統合する手法を開発した。
論文 参考訳(メタデータ) (2023-01-27T02:01:50Z) - I Know What You Draw: Learning Grasp Detection Conditioned on a Few
Freehand Sketches [74.63313641583602]
そこで本研究では,スケッチ画像に関連のある潜在的な把握構成を生成する手法を提案する。
私たちのモデルは、現実世界のアプリケーションで簡単に実装できるエンドツーエンドで訓練され、テストされています。
論文 参考訳(メタデータ) (2022-05-09T04:23:36Z) - Learning to Generate Scene Graph from Natural Language Supervision [52.18175340725455]
シーングラフと呼ばれる画像内の局所化オブジェクトとその関係をグラフィカルに表現するために,画像と文のペアから学習する最初の方法の1つを提案する。
既製のオブジェクト検出器を利用してオブジェクトのインスタンスを識別し、ローカライズし、検出された領域のラベルとキャプションから解析された概念をマッチングし、シーングラフを学習するための"擬似ラベル"を作成する。
論文 参考訳(メタデータ) (2021-09-06T03:38:52Z) - Contextualizing Enhances Gradient Based Meta Learning [7.009032627535598]
本稿では,メタラーニング手法を文脈解析器と組み合わせることで,いくつかのショットラーニングデータセットの性能を著しく向上させることができることを示す。
オーバーフィットすることなくパラメータを更新することが困難である低データ環境に対して,我々のアプローチは特に適しています。
論文 参考訳(メタデータ) (2020-07-17T04:01:56Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。