Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
- URL: http://arxiv.org/abs/2412.03318v3
- Date: Sun, 01 Jun 2025 00:17:19 GMT
- Title: Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
- Authors: Liam Chalcroft, Jenny Crinion, Cathy J. Price, John Ashburner,
- Abstract summary: We introduce two physics-constrained approaches to generate synthetic quantitative MRI (qMRI) images.<n>Our first method, $textttqATLAS$, trains a neural network to estimate qMRI maps from standard MPRAGE images.<n>The second method, $textttq Synth$, synthesises qMRI maps directly from tissue labels.
- Score: 0.15749416770494706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmenting stroke lesions in MRI is challenging due to diverse acquisition protocols that limit model generalisability. In this work, we introduce two physics-constrained approaches to generate synthetic quantitative MRI (qMRI) images that improve segmentation robustness across heterogeneous domains. Our first method, $\texttt{qATLAS}$, trains a neural network to estimate qMRI maps from standard MPRAGE images, enabling the simulation of varied MRI sequences with realistic tissue contrasts. The second method, $\texttt{qSynth}$, synthesises qMRI maps directly from tissue labels using label-conditioned Gaussian mixture models, ensuring physical plausibility. Extensive experiments on multiple out-of-domain datasets show that both methods outperform a baseline UNet, with $\texttt{qSynth}$ notably surpassing previous synthetic data approaches. These results highlight the promise of integrating MRI physics into synthetic data generation for robust, generalisable stroke lesion segmentation. Code is available at https://github.com/liamchalcroft/qsynth
Related papers
- PhaseGen: A Diffusion-Based Approach for Complex-Valued MRI Data Generation [1.683019219727036]
Magnetic resonance imaging (MRI) raw data, or k-Space data, is complex-valued, containing both magnitude and phase information.<n>We introduce $textitPhaseGen$, a novel complex-valued diffusion model for generating synthetic MRI raw data conditioned on magnitude images.<n>Our results show that training with synthetic phase data significantly improves generalization for skull-stripping on real-world data.
arXiv Detail & Related papers (2025-04-10T08:44:19Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - DRIFTS: Optimizing Domain Randomization with Synthetic Data and Weight Interpolation for Fetal Brain Tissue Segmentation [1.7134826630987745]
We show how to maximize the out-of-domain generalization potential of SynthSegbased methods in fetal brain MRI.<n>We propose DRIFTS as an effective and practical solution for single-source domain generalization.
arXiv Detail & Related papers (2024-11-11T10:17:44Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - A Compact Implicit Neural Representation for Efficient Storage of
Massive 4D Functional Magnetic Resonance Imaging [14.493622422645053]
fMRI compressing poses unique challenges due to its intricate temporal dynamics, low signal-to-noise ratio, and complicated underlying redundancies.
This paper reports a novel compression paradigm specifically tailored for fMRI data based on Implicit Neural Representation (INR)
arXiv Detail & Related papers (2023-11-30T05:54:37Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - High-fidelity Direct Contrast Synthesis from Magnetic Resonance
Fingerprinting [28.702553164811473]
We propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation.
In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics.
arXiv Detail & Related papers (2022-12-21T07:11:39Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative
R2* Mapping [12.414040285543273]
CoRRECT is a unified deep unfolding (DU) framework for Quantitative MRI (qMRI)
It consists of a model-based end-to-end neural network, a method for motion-artifact reduction, and a self-supervised learning scheme.
Our results on experimentally collected multi-Gradient-Recalled Echo (mGRE) MRI data show that CoRRECT recovers motion and inhomogeneity artifact-free R2* maps in highly accelerated acquisition settings.
arXiv Detail & Related papers (2022-10-12T15:49:51Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Robust Segmentation of Brain MRI in the Wild with Hierarchical CNNs and
no Retraining [1.0499611180329802]
Retrospective analysis of brain MRI scans acquired in the clinic has the potential to enable neuroimaging studies with sample sizes much larger than those found in research datasets.
Recent advances in convolutional neural networks (CNNs) and domain randomisation for image segmentation may enable morphometry of clinical MRI at scale.
We show that SynthSeg is generally robust, but frequently falters on scans with low signal-to-noise ratio or poor tissue contrast.
We propose SynthSeg+, a novel method that greatly mitigates these problems using a hierarchy of conditional segmentation and denoising CNNs.
arXiv Detail & Related papers (2022-03-03T19:18:28Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
We present the first successful application of the CSGM framework on clinical MRI data.
We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions.
arXiv Detail & Related papers (2021-08-03T08:52:06Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Deep Learning based Multi-modal Computing with Feature Disentanglement
for MRI Image Synthesis [8.363448006582065]
We propose a deep learning based multi-modal computing model for MRI synthesis with feature disentanglement strategy.
The proposed approach decomposes each input modality into modality-invariant space with shared information and modality-specific space with specific information.
To address the lack of specific information of the target modality in the test phase, a local adaptive fusion (LAF) module is adopted to generate a modality-like pseudo-target.
arXiv Detail & Related papers (2021-05-06T17:22:22Z) - Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI
Reconstruction Models and their Generalizability to Varying Coil
Configurations [40.263770807921524]
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process.
The Multi-Coil Magnetic Resonance Image (MC-MRI) Reconstruction Challenge provides a benchmark that aims at addressing these issues.
We describe the challenge experimental design, and summarize the results of a set of baseline and state of the art brain MRI reconstruction models.
arXiv Detail & Related papers (2020-11-10T04:11:48Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.