論文の概要: Classical Shadows with Improved Median-of-Means Estimation
- arxiv url: http://arxiv.org/abs/2412.03381v1
- Date: Wed, 04 Dec 2024 15:07:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:10:12.145314
- Title: Classical Shadows with Improved Median-of-Means Estimation
- Title(参考訳): 中間値推定を改良した古典的影
- Authors: Winston Fu, Dax Enshan Koh, Siong Thye Goh, Jian Feng Kong,
- Abstract要約: 古典的なシャドウプロトコルは、平均平均値(MoM)推定器を用いて、M$オブザーバブルの期待値を効率的に推定する。
我々はミンスカーが提案した修正MoM推定器について検討した。
本研究は,従来のシャドウプロトコルの性能を最適化するために,特定の測定設定に対する推定器の調整の重要性を強調した。
- 参考スコア(独自算出の注目度): 0.19285000127136376
- License:
- Abstract: The classical shadows protocol, introduced by Huang et al. [Nat. Phys. 16, 1050 (2020)], makes use of the median-of-means (MoM) estimator to efficiently estimate the expectation values of $M$ observables with failure probability $\delta$ using only $\mathcal{O}(\log(M/\delta))$ measurements. In their analysis, Huang et al. used loose constants in their asymptotic performance bounds for simplicity. However, the specific values of these constants can significantly affect the number of shots used in practical implementations. To address this, we studied a modified MoM estimator proposed by Minsker [PMLR 195, 5925 (2023)] that uses optimal constants and involves a U-statistic over the data set. For efficient estimation, we implemented two types of incomplete U-statistics estimators, the first based on random sampling and the second based on cyclically permuted sampling. We compared the performance of the original and modified estimators when used with the classical shadows protocol with single-qubit Clifford unitaries (Pauli measurements) for an Ising spin chain, and global Clifford unitaries (Clifford measurements) for the Greenberger-Horne-Zeilinger (GHZ) state. While the original estimator outperformed the modified estimators for Pauli measurements, the modified estimators showed improved performance over the original estimator for Clifford measurements. Our findings highlight the importance of tailoring estimators to specific measurement settings to optimize the performance of the classical shadows protocol in practical applications.
- Abstract(参考訳): Huang et al [Nat. Phys. 1050 (2020)] によって導入された古典的なシャドウプロトコルは、中央値(MoM)推定器を用いて、失敗確率を持つ$M$オブザーバブルの期待値を効率的に推定し、$\delta$は$\mathcal{O}(\log(M/\delta))$測定のみを使用する。
それらの分析において、Huangらはその漸近的なパフォーマンス境界において、単純さのためにゆるやかな定数を使用した。
しかし、これらの定数の特定の値は、実用的な実装で使用されるショットの数に大きく影響する可能性がある。
これを解決するため,ミンスカー (PMLR 195, 5925 (2023)) が提案した修正MoM推定器について検討した。
効率的な推定法として, ランダムサンプリングに基づく2種類の不完全U統計推定器, 循環的に置換されたサンプリングに基づく2種類の不完全U統計推定器を実装した。
我々は,従来のシャドウプロトコルとIsingスピンチェーンの単一ビットクリフォードユニタリー(Pauli測定)とGreenberger-Horne-Zeilinger(GHZ)状態のグローバルクリフォードユニタリー(Clifford測定)を比較した。
元の推定器はパウリ測定のための修正された推定器よりも優れていたが、修正された推定器はクリフォード測定のためのオリジナルの推定器よりも改善された性能を示した。
本研究は,従来のシャドウプロトコルの性能を最適化するために,特定の測定設定に対する推定器の調整の重要性を強調した。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Nearest Neighbor Sampling for Covariate Shift Adaptation [7.940293148084844]
重みを推定しない新しい共変量シフト適応法を提案する。
基本的な考え方は、ソースデータセットの$k$-nearestの隣人によってラベル付けされたラベル付けされていないターゲットデータを直接扱うことだ。
実験の結果, 走行時間を大幅に短縮できることがわかった。
論文 参考訳(メタデータ) (2023-12-15T17:28:09Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
我々は,強い対数対数データの下での拡散に基づく生成モデルの収束挙動を理論的に保証する。
スコア推定に使用される関数のクラスは、スコア関数上のリプシッツネスの仮定を避けるために、リプシッツ連続関数からなる。
この手法はサンプリングアルゴリズムにおいて最もよく知られた収束率をもたらす。
論文 参考訳(メタデータ) (2023-11-22T18:40:45Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Semi-Supervised Quantile Estimation: Robust and Efficient Inference in High Dimensional Settings [0.5735035463793009]
2つの利用可能なデータセットを特徴とする半教師付き環境での量子推定を考察する。
本稿では,2つのデータセットに基づいて,応答量子化(s)に対する半教師付き推定器群を提案する。
論文 参考訳(メタデータ) (2022-01-25T10:02:23Z) - A Non-Classical Parameterization for Density Estimation Using Sample
Moments [0.0]
サンプルモーメントを用いた密度推定のための非古典的パラメトリゼーションを提案する。
提案した推定器は、任意の偶数列までのパワーモーメントがサンプルモーメントと正確に一致する文献で最初のものである。
論文 参考訳(メタデータ) (2022-01-13T04:28:52Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
Estimator [93.05919133288161]
一般的なGumbel-Softmax推定器のストレートスルー変量の分散は、ラオ・ブラックウェル化により減少できることを示す。
これは平均二乗誤差を確実に減少させる。
これは分散の低減、収束の高速化、および2つの教師なし潜在変数モデルの性能向上につながることを実証的に実証した。
論文 参考訳(メタデータ) (2020-10-09T22:54:38Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。