論文の概要: State Frequency Estimation for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2412.03442v1
- Date: Wed, 04 Dec 2024 16:30:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:08:49.775930
- Title: State Frequency Estimation for Anomaly Detection
- Title(参考訳): 異常検出のための状態周波数推定
- Authors: Clinton Cao, Agathe Blaise, Annibale Panichella, Sicco Verwer,
- Abstract要約: 本稿では,状態訪問頻度を用いてスコアを動的に適用し,異常検出に適応させる新しい手法であるSEQUENTを提案する。
3つのNetFlowデータセットに対するSEQUENTの評価は,本手法が既存手法より優れていることを示すとともに,異常検出の有効性を示した。
- 参考スコア(独自算出の注目度): 14.303220325775472
- License:
- Abstract: Many works have studied the efficacy of state machines for detecting anomalies within NetFlows. These works typically learn a model from unlabeled data and compute anomaly scores for arbitrary traces based on their likelihood of occurrence or how well they fit within the model. However, these methods do not dynamically adapt their scores based on the traces seen at test time. This becomes a problem when an adversary produces seemingly common traces in their attack, causing the model to miss the detection by assigning low anomaly scores. We propose SEQUENT, a new approach that uses the state visit frequency to adapt its scoring for anomaly detection dynamically. SEQUENT subsequently uses the scores to generate root causes for anomalies. These allow the grouping of alarms and simplify the analysis of anomalies. Our evaluation of SEQUENT on three NetFlow datasets indicates that our approach outperforms existing methods, demonstrating its effectiveness in detecting anomalies.
- Abstract(参考訳): 多くの研究が、NetFlows内の異常を検出するためのステートマシンの有効性について研究している。
これらの研究は通常、ラベルのないデータからモデルを学び、任意のトレースに対して異常スコアを計算します。
しかし、これらの手法はテスト時に見られたトレースに基づいてスコアを動的に適応しない。
これは、敵が攻撃で一見共通した痕跡を発生させたときに問題となり、低い異常スコアを割り当てることで、モデルが検出を見逃してしまう。
本稿では,状態訪問頻度を用いてスコアを動的に適用し,異常検出に適応させる新しい手法であるSEQUENTを提案する。
SEQUENTはその後、スコアを使用して異常の根本原因を生成する。
これらはアラームをグループ化し、異常の解析を単純化する。
3つのNetFlowデータセットに対するSEQUENTの評価は,本手法が既存手法より優れていることを示すとともに,異常検出の有効性を示した。
関連論文リスト
- Semi-supervised learning via DQN for log anomaly detection [1.5339370927841764]
ログ異常検出における現在の手法は、ラベルなしデータの未使用、正規クラスと異常クラスのデータの不均衡、偽陽性と偽陰性率などの課題に直面している。
本稿では,DQNLogと呼ばれる半教師付きログ異常検出手法を提案する。
広く使われている3つのデータセット上でDQNLogを評価し、大規模未ラベルデータを効果的に活用できることを実証した。
論文 参考訳(メタデータ) (2024-01-06T08:04:13Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
異常検出はラベル付き異常データの不足のため、機械学習においてユニークな課題となる。
最近の研究は、追加のラベル付き異常サンプルによる深部異常検出モデルのトレーニングを増強することで、このような問題を緩和しようとするものである。
本稿では,異常検出に対するバイアス付き異常集合の効果を理解することを目的とする。
論文 参考訳(メタデータ) (2021-05-16T03:55:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - $\text{A}^3$: Activation Anomaly Analysis [0.7734726150561088]
隠れアクティベーション値には,正常標本と異常標本の識別に有用な情報が含まれていることを示す。
我々のアプローチは、純粋にデータ駆動のエンドツーエンドモデルで3つのニューラルネットワークを組み合わせる。
異常ネットワークのおかげで、我々の手法は厳密な半教師付き設定でも機能する。
論文 参考訳(メタデータ) (2020-03-03T21:23:56Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。