A new fidelity of quantum channel evolution and its geometric interpretation
- URL: http://arxiv.org/abs/2412.03444v1
- Date: Wed, 04 Dec 2024 16:32:59 GMT
- Title: A new fidelity of quantum channel evolution and its geometric interpretation
- Authors: Xiaojing Yan, Xiao Sun, Mingming Du, Jiashan Tang,
- Abstract summary: We define an $alpha$-$z$-fidelity as a significant quantity in quantum information theory.
We propose a limit formula for the maximum and the minimum of the fidelity.
We offer a geometric interpretation for measuring the distance between quantum states.
- Score: 2.7381317964853737
- License:
- Abstract: Fidelity is crucial for characterizing transformations of quantum states under various quantum channels, which can be served as a fundamental tool in resource theories. Firstly, we define an $\alpha$-$z$-fidelity as a significant quantity in quantum information theory and give the properties of the fidelity with orders $\alpha$ and $z$. Secondly, by analyzing the $\alpha$-$z$-fidelity under the evolution of different types of quantum channels (single orbit, all quantum channels, unitary quantum channels, and mixed unitary quantum channels), we propose a limit formula for the maximum and the minimum of the $\alpha$-$z$-fidelity. In addition, we have extended the $\alpha$-$z$-R\'enyi relative entropy, providing new insights into its relevance for resource quantification. Finally, we offer a geometric interpretation for measuring the distance between quantum states, contributing to the broader understanding of the operational and transformative power of dynamical quantum resources across various physical settings.
Related papers
- Spoofing of Quantum Channels Enables Low-Rank Projective Simulation [0.0]
We show how a Sinkhorn-like algorithm enables us to find the minimum admissible Kraus rank that generates the correct outcome marginals.
For a generic $d$-dimensional quantum system, this lowers the Kraus rank from $d2$ to the theoretical minimum of $d$.
We numerically demonstrate our findings, for which the code is available and open source.
arXiv Detail & Related papers (2024-10-18T17:02:46Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - A Study on Thermal Quantum Resources and Probabilistic Teleportation in Spin-1/2 Heisenberg XYZ+DM+KSEA Model under Variable Zeeman Splitting [0.8136541584281987]
Investigation of measures of quantum coherence and quantum correlation in the spin-1/2 Heisenberg XYZ model with added Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions.
arXiv Detail & Related papers (2024-05-25T16:13:40Z) - Quantifying High-Order Interdependencies in Entangled Quantum States [43.70611649100949]
We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
arXiv Detail & Related papers (2023-10-05T17:00:13Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - An introductory review on resource theories of generalized nonclassical
light [0.0]
Quantum resource theory is perhaps the most revolutionary framework that quantum physics has ever experienced.
Generalized quantum optical framework strives to bring in several prosperous contemporary ideas.
arXiv Detail & Related papers (2021-03-23T05:10:44Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Bounding generalized relative entropies: Nonasymptotic quantum speed
limits [0.0]
Information theory has become an increasingly important research field to better understand quantum mechanics.
Relative entropy quantifies how difficult is to tell apart two probability distributions, or even two quantum states.
We show how this quantity changes under a quantum process.
arXiv Detail & Related papers (2020-08-27T15:37:04Z) - Relating relative R\'enyi entropies and Wigner-Yanase-Dyson skew
information to generalized multiple quantum coherences [0.0]
We investigate the $alpha$-MQCs, a novel class of multiple quantum coherences based on $alpha$-relative purity.
Our framework enables linking $alpha$-MQCs to Wigner-Yanase-Dyson skew information.
We illustrate these ideas for quantum systems described by single-qubit states, two-qubit Bell-diagonal states, and a wide class of multiparticle mixed states.
arXiv Detail & Related papers (2020-02-25T21:12:32Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.