MorphoSeg: An Uncertainty-Aware Deep Learning Method for Biomedical Segmentation of Complex Cellular Morphologies
- URL: http://arxiv.org/abs/2409.17110v1
- Date: Wed, 25 Sep 2024 17:25:06 GMT
- Title: MorphoSeg: An Uncertainty-Aware Deep Learning Method for Biomedical Segmentation of Complex Cellular Morphologies
- Authors: Tianhao Zhang, Heather J. McCourty, Berardo M. Sanchez-Tafolla, Anton Nikolaev, Lyudmila S. Mihaylova,
- Abstract summary: Deep learning has revolutionized medical and biological imaging, particularly in segmentation tasks.
segmenting biological cells remains challenging due to the high variability and complexity of cell shapes.
We introduce a novel benchmark dataset of Ntera-2 cells, a pluripotent carcinoma cell line, exhibiting diverse morphologies across multiple stages of differentiation.
We propose an uncertainty-aware deep learning framework for complex cellular morphology segmentation (MorphoSeg) by incorporating sampling of virtual outliers from low-likelihood regions during training.
- Score: 5.50767638479269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has revolutionized medical and biological imaging, particularly in segmentation tasks. However, segmenting biological cells remains challenging due to the high variability and complexity of cell shapes. Addressing this challenge requires high-quality datasets that accurately represent the diverse morphologies found in biological cells. Existing cell segmentation datasets are often limited by their focus on regular and uniform shapes. In this paper, we introduce a novel benchmark dataset of Ntera-2 (NT2) cells, a pluripotent carcinoma cell line, exhibiting diverse morphologies across multiple stages of differentiation, capturing the intricate and heterogeneous cellular structures that complicate segmentation tasks. To address these challenges, we propose an uncertainty-aware deep learning framework for complex cellular morphology segmentation (MorphoSeg) by incorporating sampling of virtual outliers from low-likelihood regions during training. Our comprehensive experimental evaluations against state-of-the-art baselines demonstrate that MorphoSeg significantly enhances segmentation accuracy, achieving up to a 7.74% increase in the Dice Similarity Coefficient (DSC) and a 28.36% reduction in the Hausdorff Distance. These findings highlight the effectiveness of our dataset and methodology in advancing cell segmentation capabilities, especially for complex and variable cell morphologies. The dataset and source code is publicly available at https://github.com/RanchoGoose/MorphoSeg.
Related papers
- Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
Multiplex Imaging (MI) enables the simultaneous visualization of multiple biological markers in separate imaging channels at subcellular resolution.
We propose a segmentation-free deep learning approach that leverages grouped convolutions to learn interpretable embedded features from each imaging channel.
arXiv Detail & Related papers (2024-11-02T11:21:33Z) - Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
We identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition.
We propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents.
arXiv Detail & Related papers (2024-07-14T04:41:16Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
This study evaluates cell image segmentation models under optical aberrations from fluorescence and bright field microscopy.
We train and test several segmentation models, including the Otsu threshold method and Mask R-CNN with different network heads.
In contrast, Cellpose 2.0 proves effective for complex cell images under similar conditions.
arXiv Detail & Related papers (2024-04-12T15:45:26Z) - CausalCellSegmenter: Causal Inference inspired Diversified Aggregation
Convolution for Pathology Image Segmentation [9.021612471640635]
Deep learning models have shown promising performance for cell nucleus segmentation in the field of pathology image analysis.
We propose a novel framework termed CausalCellSegmenter, which combines Causal Inference Module (CIM) with Diversified Aggregation Convolution (DAC) techniques.
arXiv Detail & Related papers (2024-03-10T03:04:13Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Topology-Guided Multi-Class Cell Context Generation for Digital
Pathology [28.43244574309888]
We introduce several mathematical tools from spatial statistics and topological data analysis.
We generate high quality multi-class cell layouts for the first time.
We show that the topology-rich cell layouts can be used for data augmentation and improve the performance of downstream tasks such as cell classification.
arXiv Detail & Related papers (2023-04-05T07:01:34Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.