Deep Variational Bayesian Modeling of Haze Degradation Process
- URL: http://arxiv.org/abs/2412.03745v1
- Date: Wed, 04 Dec 2024 22:24:37 GMT
- Title: Deep Variational Bayesian Modeling of Haze Degradation Process
- Authors: Eun Woo Im, Junsung Shin, Sungyong Baik, Tae Hyun Kim,
- Abstract summary: We introduce a variational Bayesian framework for single image dehazing.
Based on a physical model for haze degradation, our framework leads to a new objective function.
Our framework can be seamlessly incorporated with other existing dehazing networks.
- Score: 9.978089704770646
- License:
- Abstract: Relying on the representation power of neural networks, most recent works have often neglected several factors involved in haze degradation, such as transmission (the amount of light reaching an observer from a scene over distance) and atmospheric light. These factors are generally unknown, making dehazing problems ill-posed and creating inherent uncertainties. To account for such uncertainties and factors involved in haze degradation, we introduce a variational Bayesian framework for single image dehazing. We propose to take not only a clean image and but also transmission map as latent variables, the posterior distributions of which are parameterized by corresponding neural networks: dehazing and transmission networks, respectively. Based on a physical model for haze degradation, our variational Bayesian framework leads to a new objective function that encourages the cooperation between them, facilitating the joint training of and thereby boosting the performance of each other. In our framework, a dehazing network can estimate a clean image independently of a transmission map estimation during inference, introducing no overhead. Furthermore, our model-agnostic framework can be seamlessly incorporated with other existing dehazing networks, greatly enhancing the performance consistently across datasets and models.
Related papers
- Isomorphic Pruning for Vision Models [56.286064975443026]
Structured pruning reduces the computational overhead of deep neural networks by removing redundant sub-structures.
We present Isomorphic Pruning, a simple approach that demonstrates effectiveness across a range of network architectures.
arXiv Detail & Related papers (2024-07-05T16:14:53Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - Adversarial Attack via Dual-Stage Network Erosion [7.28871533402894]
Deep neural networks are vulnerable to adversarial examples, which can fool deep models by adding subtle perturbations.
This paper proposes to improve the transferability of adversarial examples, and applies dual-stage feature-level perturbations to an existing model to implicitly create a set of diverse models.
We conduct comprehensive experiments both on non-residual and residual networks, and obtain more transferable adversarial examples with the computational cost similar to the state-of-the-art method.
arXiv Detail & Related papers (2022-01-01T02:38:09Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
We develop a novel framework that approximates the posterior distribution of the unknown image at each query observation.
It handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets.
arXiv Detail & Related papers (2021-10-22T10:02:48Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
We adapt adversarial training by directly perturbing feature statistics, rather than image pixels, to produce robust models.
Our proposed method, Adversarial Batch Normalization (AdvBN), is a single network layer that generates worst-case feature perturbations during training.
arXiv Detail & Related papers (2020-09-18T17:52:34Z) - Progressive Update Guided Interdependent Networks for Single Image
Dehazing [24.565068569913382]
Images with haze of different varieties often pose a significant challenge to dehazing.
We propose a multi-network dehazing framework containing novel interdependent dehazing and haze parameter updater networks.
arXiv Detail & Related papers (2020-08-04T17:05:48Z) - Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep
Gradient Descent [4.029853654012035]
Recent advances in inverse problems leverage powerful data-driven models, e.g., deep neural networks.
We develop a scalable, data-driven, knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks.
arXiv Detail & Related papers (2020-07-20T09:43:31Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.