論文の概要: INRFlow: Flow Matching for INRs in Ambient Space
- arxiv url: http://arxiv.org/abs/2412.03791v2
- Date: Thu, 29 May 2025 01:03:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 20:45:56.857244
- Title: INRFlow: Flow Matching for INRs in Ambient Space
- Title(参考訳): INRFlow: 環境空間におけるINRのフローマッチング
- Authors: Yuyang Wang, Anurag Ranjan, Josh Susskind, Miguel Angel Bautista,
- Abstract要約: フローマッチングモデルは、まずデータ圧縮機を訓練し、その後、データ圧縮機の潜在空間でフローマッチング生成モデルを訓練する。
この2段階のパラダイムは、データドメイン全体にわたってモデルを統一するための障害を設定する。
InRFlowは、周辺空間で直接フローマッチング変換器を学習するためのドメインに依存しないアプローチである。
- 参考スコア(独自算出の注目度): 6.911507447184487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Flow matching models have emerged as a powerful method for generative modeling on domains like images or videos, and even on irregular or unstructured data like 3D point clouds or even protein structures. These models are commonly trained in two stages: first, a data compressor is trained, and in a subsequent training stage a flow matching generative model is trained in the latent space of the data compressor. This two-stage paradigm sets obstacles for unifying models across data domains, as hand-crafted compressors architectures are used for different data modalities. To this end, we introduce INRFlow, a domain-agnostic approach to learn flow matching transformers directly in ambient space. Drawing inspiration from INRs, we introduce a conditionally independent point-wise training objective that enables INRFlow to make predictions continuously in coordinate space. Our empirical results demonstrate that INRFlow effectively handles different data modalities such as images, 3D point clouds and protein structure data, achieving strong performance in different domains and outperforming comparable approaches. INRFlow is a promising step towards domain-agnostic flow matching generative models that can be trivially adopted in different data domains.
- Abstract(参考訳): フローマッチングモデルは、画像やビデオのようなドメイン、さらには3Dポイントクラウドやタンパク質構造のような不規則または不規則なデータでさえ、生成モデリングの強力な方法として登場した。
これらのモデルは、まず、データ圧縮機を訓練し、続いて、フローマッチング生成モデルをデータ圧縮機の潜在空間で訓練する。
この2段階のパラダイムは、手作りの圧縮機アーキテクチャが異なるデータモダリティに使用されるため、データドメイン間でモデルを統一するための障害を規定する。
そこで本研究では,環境空間で直接フローマッチング変換器を学習するためのドメインに依存しないアプローチであるINRFlowを紹介する。
InRs からインスピレーションを得て,INRFlow が座標空間で連続的に予測できる条件独立なポイントワイド学習目標を導入する。
実験の結果,INRFlowは画像や3Dポイントクラウド,タンパク質構造データなどの異なるデータモダリティを効果的に処理し,異なるドメインで高い性能を達成し,同等のアプローチよりも優れていることが示された。
INRFlowは、異なるデータドメインで自明に採用可能な、ドメインに依存しないフローマッチング生成モデルに向けた、有望なステップである。
関連論文リスト
- Combining Denoising Autoencoders with Contrastive Learning to fine-tune Transformer Models [0.0]
本研究は,分類タスクのベースモデルを調整するための3段階手法を提案する。
我々は,DAE(Denoising Autoencoder)を用いたさらなるトレーニングを行うことで,モデルの信号をデータ配信に適用する。
さらに、教師付きコントラスト学習のための新しいデータ拡張手法を導入し、不均衡なデータセットを修正する。
論文 参考訳(メタデータ) (2024-05-23T11:08:35Z) - Heterogeneous Federated Learning with Splited Language Model [22.65325348176366]
フェデレート・スプリット・ラーニング(FSL)は、実際には有望な分散学習パラダイムである。
本稿では,前訓練画像変換器(PIT)をFedVと呼ばれる初期モデルとして利用し,トレーニングプロセスの高速化とモデルロバスト性の向上を図る。
我々は、実世界のデータセット、異なる部分的デバイス参加、異種データ分割におけるPITを用いたFSL手法の体系的評価を初めて行った。
論文 参考訳(メタデータ) (2024-03-24T07:33:08Z) - In-Context Convergence of Transformers [63.04956160537308]
勾配降下法により訓練したソフトマックスアテンションを有する一層変圧器の学習力学について検討した。
不均衡な特徴を持つデータに対しては、学習力学が段階的に収束する過程をとることを示す。
論文 参考訳(メタデータ) (2023-10-08T17:55:33Z) - Fourier Test-time Adaptation with Multi-level Consistency for Robust
Classification [10.291631977766672]
本稿では,Fourier Test-Time Adaptation (FTTA) と呼ばれる新しい手法を提案する。
FTTAは、予測の自己監督を行うために、ペア入力の信頼性の高い多レベル整合性測定を構築する。
異なる形態と器官を持つ3つの大きな分類データセットで広範囲に検証された。
論文 参考訳(メタデータ) (2023-06-05T02:29:38Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
簡単なトランスフォーマーベースモデルが時間差と模倣学習に基づくアプローチの両方と競合することを示す。
単純なトランスフォーマーベースのモデルが時間差と模倣学習ベースのアプローチの両方で競合するのはこれが初めてである。
論文 参考訳(メタデータ) (2023-05-26T00:43:02Z) - Adapting Sentence Transformers for the Aviation Domain [0.8437187555622164]
本稿では,航空分野における文変換器の適応手法を提案する。
本手法は,事前学習と微調整を併用した2段階のプロセスである。
本研究は,航空などの専門産業における高品質なNLPソリューション開発におけるドメイン固有適応の重要性を強調した。
論文 参考訳(メタデータ) (2023-05-16T15:53:24Z) - AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation [80.33846577924363]
ビデオフレームギスブのための新しいネットワークアーキテクチャであるAMT(All-Pairs Multi-Field Transforms)を提案する。
まず、すべての画素に対して双方向のボリュームを構築し、予測された両側フローを用いて相関関係を検索する。
第2に、入力フレーム上で逆向きのワープを行うために、一対の更新された粗い流れから細粒度の流れ場の複数のグループを導出する。
論文 参考訳(メタデータ) (2023-04-19T16:18:47Z) - Transformers for End-to-End InfoSec Tasks: A Feasibility Study [6.847381178288385]
私たちは2つの異なるInfoSecデータフォーマット、特にURLとPEファイルに対してトランスフォーマーモデルを実装します。
URLトランスフォーマーモデルは、高いパフォーマンスレベルに達するためには、異なるトレーニングアプローチが必要です。
提案手法は,PEファイルのベンチマークデータセット上で,確立されたマルウェア検出モデルに相容れない性能を示す。
論文 参考訳(メタデータ) (2022-12-05T23:50:46Z) - Inference from Real-World Sparse Measurements [21.194357028394226]
実世界の問題は、しばしば複雑で非構造的な測定セットが伴うが、これはセンサーが空間または時間に狭く配置されているときに起こる。
セットからセットまで様々な位置で測定セットを処理し、どこででも読み出しを抽出できるディープラーニングアーキテクチャは、方法論的に困難である。
本稿では,適用性と実用的堅牢性に着目したアテンションベースモデルを提案する。
論文 参考訳(メタデータ) (2022-10-20T13:42:20Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixupは、入力例と対応するラベルを線形に補間する最新のデータ拡張技術である。
本稿では,自然言語処理タスクにmixupを適用する方法について検討する。
我々は、様々なNLPタスクに対して、mixup-transformerと呼ばれる、トランスフォーマーベースの事前学習アーキテクチャにmixupを組み込んだ。
論文 参考訳(メタデータ) (2020-10-05T23:37:30Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。