論文の概要: Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations
- arxiv url: http://arxiv.org/abs/2407.19916v1
- Date: Mon, 29 Jul 2024 11:48:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:56:27.267798
- Title: Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations
- Title(参考訳): 高速空力シミュレーションのためのニューラルフィールド
- Authors: Giovanni Catalani, Siddhant Agarwal, Xavier Bertrand, Frederic Tost, Michael Bauerheim, Joseph Morlier,
- Abstract要約: 本稿では,メッシュ領域上での定常流体力学シミュレーションの代理モデルを学習する手法を提案する。
提案したモデルは, 異なる流れ条件に対して非構造領域に直接適用することができる。
顕著なことに、RANS超音速翼データセット上の高忠実度解法よりも5桁高速な推論を行うことができる。
- 参考スコア(独自算出の注目度): 1.1932047172700866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains, based on Implicit Neural Representations (INRs). The proposed models can be applied directly to unstructured domains for different flow conditions, handle non-parametric 3D geometric variations, and generalize to unseen shapes at test time. The coordinate-based formulation naturally leads to robustness with respect to discretization, allowing an excellent trade-off between computational cost (memory footprint and training time) and accuracy. The method is demonstrated on two industrially relevant applications: a RANS dataset of the two-dimensional compressible flow over a transonic airfoil and a dataset of the surface pressure distribution over 3D wings, including shape, inflow condition, and control surface deflection variations. On the considered test cases, our approach achieves a more than three times lower test error and significantly improves generalization error on unseen geometries compared to state-of-the-art Graph Neural Network architectures. Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset. Code is available at https://gitlab.isae-supaero.fr/gi.catalani/aero-nepf
- Abstract(参考訳): 本稿では,Inmplicit Neural Representations (INRs)に基づいて,メッシュ領域上の定常流体力学シミュレーションの代理モデルを学習する手法を提案する。
提案したモデルは、異なる流れ条件の非構造領域に直接適用でき、非パラメトリックな3次元幾何学的変動を処理し、テスト時に見えない形状に一般化することができる。
座標に基づく定式化は、自然に離散化に関して堅牢性をもたらし、計算コスト(メモリフットプリントとトレーニング時間)と精度の優れたトレードオフを可能にする。
本手法は,超音速翼上における2次元圧縮性流れのRANSデータセットと,形状,流入条件,制御面偏差を含む3次元翼上における表面圧力分布のデータセットの2つの産業的応用について実証した。
検討されたテストケースでは,提案手法はテストエラーの3倍以上の低減を実現し,最先端のグラフニューラルネットワークアーキテクチャと比較して未確認領域の一般化誤差を大幅に改善する。
顕著なことに、RANS超音速翼データセット上の高忠実度解法よりも5桁高速な推論を行うことができる。
コードはhttps://gitlab.isae-supaero.fr/gi.catalani/aero-nepfで入手できる。
関連論文リスト
- 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
既存の方法は、角度や四元数を用いて空間領域でパラメータ化された3次元回転を学習する。
本稿では,3次元回転回帰のためのWigner-D係数を直接予測する周波数領域アプローチを提案する。
提案手法は, ModelNet10-SO(3) や PASCAL3D+ などのベンチマーク上での最先端結果を実現する。
論文 参考訳(メタデータ) (2024-11-01T12:50:38Z) - FlowBench: A Large Scale Benchmark for Flow Simulation over Complex
Geometries [19.15738125919099]
FlowBenchは10K以上のサンプルを持つニューラルシミュレータ用のデータセットである。
FlowBenchは、複雑な幾何学、結合フロー現象、およびニューラルPDEソルバの性能に関するデータ十分性の間の相互作用を評価することができる。
論文 参考訳(メタデータ) (2024-09-26T16:38:48Z) - Implicit Neural Representation For Accurate CFD Flow Field Prediction [0.0]
航空機エンジンタービンと圧縮機のブレードに適用した3次元流れ場予測のためのディープラーニングフレームワークを提案する。
我々は、任意の3Dフィールドを、バックボーンネットと呼ばれるニューラルネットワークによってモデル化された座標からの関数と見なす。
境界層、ウェイク、衝撃波などの重要な流れ特性を正確に描画することができる。
論文 参考訳(メタデータ) (2024-08-12T20:41:07Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
本研究は,CFDを用いた3次元フローフィールドの計算から,建物のフットプリント上の2次元画像から画像への変換に基づく問題まで,歩行者の高さレベルでのフローフィールドの予測に至るまでの課題を言い換える。
本稿では,画像から画像への変換タスクの最先端を表現したPix2PixやCycleGANなど,GAN(Generative Adversarial Network)の利用について検討する。
論文 参考訳(メタデータ) (2021-12-15T19:37:11Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
我々は、数値コードをより安価でプロジェクションベースのサロゲートモデルに置き換えている。
このモデルは、数値的な方法で必要となるすべての前の電場を計算することなく、所定の時間で電場を近似することができる。
このモデルでは, シミュレーションパラメータの狭い範囲におけるデータの摂動問題において, 高品質な再構成が示されており, 大規模な入力データに利用することができる。
論文 参考訳(メタデータ) (2021-06-01T08:46:04Z) - Graph Convolutional Neural Networks for Body Force Prediction [0.0]
グラフベースのデータ駆動モデルを示し、非構造化メッシュ上で定義されたフィールドの推論を行う。
ネットワークは、異なる解像度のフィールドサンプルから推論することができ、各サンプルの測定結果が提示される順序に不変である。
論文 参考訳(メタデータ) (2020-12-03T19:53:47Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) 問題は、複数のフレームにまたがる2次元特徴対応から変形物体の3次元形状を復元することを目的としている。
提案手法は,ノイズに対する精度,スケーラビリティ,堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2020-06-15T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。