Electronic Health Records-Based Data-Driven Diabetes Knowledge Unveiling and Risk Prognosis
- URL: http://arxiv.org/abs/2412.03961v1
- Date: Thu, 05 Dec 2024 08:26:07 GMT
- Title: Electronic Health Records-Based Data-Driven Diabetes Knowledge Unveiling and Risk Prognosis
- Authors: Huadong Pang, Li Zhou, Yiping Dong, Peiyuan Chen, Dian Gu, Tianyi Lyu, Hansong Zhang,
- Abstract summary: Our research presents an innovative model that synergizes the capabilities of Bidirectional Long Short-Term Memory Networks-Conditional Random Field (BiLSTM-CRF) with a fusion of XGBoost and Logistic Regression.
This model is designed to enhance the accuracy of diabetes risk prediction by conducting an in-depth analysis of electronic medical records data.
- Score: 3.2837324756563793
- License:
- Abstract: In the healthcare sector, the application of deep learning technologies has revolutionized data analysis and disease forecasting. This is particularly evident in the field of diabetes, where the deep analysis of Electronic Health Records (EHR) has unlocked new opportunities for early detection and effective intervention strategies. Our research presents an innovative model that synergizes the capabilities of Bidirectional Long Short-Term Memory Networks-Conditional Random Field (BiLSTM-CRF) with a fusion of XGBoost and Logistic Regression. This model is designed to enhance the accuracy of diabetes risk prediction by conducting an in-depth analysis of electronic medical records data. The first phase of our approach involves employing BiLSTM-CRF to delve into the temporal characteristics and latent patterns present in EHR data. This method effectively uncovers the progression trends of diabetes, which are often hidden in the complex data structures of medical records. The second phase leverages the combined strength of XGBoost and Logistic Regression to classify these extracted features and evaluate associated risks. This dual approach facilitates a more nuanced and precise prediction of diabetes, outperforming traditional models, particularly in handling multifaceted and nonlinear medical datasets. Our research demonstrates a notable advancement in diabetes prediction over traditional methods, showcasing the effectiveness of our combined BiLSTM-CRF, XGBoost, and Logistic Regression model. This study highlights the value of data-driven strategies in clinical decision-making, equipping healthcare professionals with precise tools for early detection and intervention. By enabling personalized treatment and timely care, our approach signifies progress in incorporating advanced analytics in healthcare, potentially improving outcomes for diabetes and other chronic conditions.
Related papers
- Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques [6.417777780911223]
This study explores the potential of utilizing administrative claims data, combined with advanced machine learning and deep learning techniques, to predict the progression of Chronic Kidney Disease (CKD) to End-Stage Renal Disease (ESRD)
We analyze a comprehensive, 10-year dataset provided by a major health insurance organization to develop prediction models for multiple observation windows using traditional machine learning methods such as Random Forest and XGBoost as well as deep learning approaches such as Long Short-Term Memory (LSTM) networks.
Our findings demonstrate that the LSTM model, particularly with a 24-month observation window, exhibits superior performance in predicting ESRD progression,
arXiv Detail & Related papers (2024-09-18T16:03:57Z) - Effect of Clinical History on Predictive Model Performance for Renal Complications of Diabetes [1.4330510916280879]
Diabetes is a chronic disease characterised by a high risk of developing diabetic nephropathy.
The early identification of individuals at heightened risk of such complications or their exacerbation can be of paramount importance to set a correct course of treatment.
We develop an array of logistic regression models to predict, over different prediction horizons, the crossing of clinically relevant glomerular filtration rate (eGFR) thresholds for patients with diabetes.
arXiv Detail & Related papers (2024-09-10T20:27:00Z) - Dynamic Hypergraph-Enhanced Prediction of Sequential Medical Visits [2.0792064732944557]
This study introduces a pioneering Dynamic Hypergraph Networks (DHCE) model designed to predict future medical diagnoses from electronic health records with enhanced accuracy.
The DHCE model innovates by identifying and differentiating acute and chronic diseases within a patient's visit history, constructing dynamic hypergraphs that capture the complex, high-order interactions between diseases.
arXiv Detail & Related papers (2024-08-08T04:19:20Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data.
RF models demonstrate robust performance in handling high-dimensional data.
CNNs have shown exceptional accuracy in cancer detection.
LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration.
arXiv Detail & Related papers (2024-08-05T09:41:34Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Time-aware Heterogeneous Graph Transformer with Adaptive Attention Merging for Health Event Prediction [6.578298085691462]
We introduce a novel heterogeneous graph learning model designed to assimilate disease domain knowledge and elucidate the intricate relationships between drugs and diseases.
When evaluated on two healthcare datasets, our approach demonstrated notable enhancements in both prediction accuracy and interpretability.
arXiv Detail & Related papers (2024-04-23T08:01:30Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.