Dynamic Hypergraph-Enhanced Prediction of Sequential Medical Visits
- URL: http://arxiv.org/abs/2408.07084v3
- Date: Mon, 06 Jan 2025 02:51:39 GMT
- Title: Dynamic Hypergraph-Enhanced Prediction of Sequential Medical Visits
- Authors: Wangying Yang, Zitao Zheng, Zhizhong Wu, Bo Zhang, Yuanfang Yang,
- Abstract summary: This study introduces a pioneering Dynamic Hypergraph Networks (DHCE) model designed to predict future medical diagnoses from electronic health records with enhanced accuracy.
The DHCE model innovates by identifying and differentiating acute and chronic diseases within a patient's visit history, constructing dynamic hypergraphs that capture the complex, high-order interactions between diseases.
- Score: 2.0792064732944557
- License:
- Abstract: This study introduces a pioneering Dynamic Hypergraph Networks (DHCE) model designed to predict future medical diagnoses from electronic health records with enhanced accuracy. The DHCE model innovates by identifying and differentiating acute and chronic diseases within a patient's visit history, constructing dynamic hypergraphs that capture the complex, high-order interactions between diseases. It surpasses traditional recurrent neural networks and graph neural networks by effectively integrating clinical event data, reflected through medical language model-assisted encoding, into a robust patient representation. Through extensive experiments on two benchmark datasets, MIMIC-III and MIMIC-IV, the DHCE model exhibits superior performance, significantly outpacing established baseline models in the precision of sequential diagnosis prediction.
Related papers
- Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit.
We introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations.
SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations.
arXiv Detail & Related papers (2025-02-15T06:33:02Z) - Electronic Health Records-Based Data-Driven Diabetes Knowledge Unveiling and Risk Prognosis [3.2837324756563793]
Our research presents an innovative model that synergizes the capabilities of Bidirectional Long Short-Term Memory Networks-Conditional Random Field (BiLSTM-CRF) with a fusion of XGBoost and Logistic Regression.
This model is designed to enhance the accuracy of diabetes risk prediction by conducting an in-depth analysis of electronic medical records data.
arXiv Detail & Related papers (2024-12-05T08:26:07Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Neural Pharmacodynamic State Space Modeling [1.589915930948668]
We propose a deep generative model that makes use of a novel attention-based neural architecture inspired by the physics of how treatments affect disease state.
Our proposed model yields significant improvements in generalization and, on real-world clinical data, provides interpretable insights into the dynamics of cancer progression.
arXiv Detail & Related papers (2021-02-22T17:51:11Z) - Deep Learning with Heterogeneous Graph Embeddings for Mortality
Prediction from Electronic Health Records [2.2859570135269625]
We train a Heterogeneous Graph Model (HGM) on Electronic Health Record data and use the resulting embedding vector as additional information added to a Conal Neural Network (CNN) model for predicting in-hospital mortality.
We find that adding HGM to a CNN model increases the mortality prediction accuracy up to 4%.
arXiv Detail & Related papers (2020-12-28T02:27:09Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
We present a temporal deep learning model to perform bidirectional representation learning on EHR sequences to predict depression.
The model generated the highest increases of precision-recall area under the curve (PRAUC) from 0.70 to 0.76 in depression prediction compared to the best baseline model.
arXiv Detail & Related papers (2020-09-26T17:56:37Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.