Mask of truth: model sensitivity to unexpected regions of medical images
- URL: http://arxiv.org/abs/2412.04030v2
- Date: Sun, 08 Dec 2024 08:26:00 GMT
- Title: Mask of truth: model sensitivity to unexpected regions of medical images
- Authors: Théo Sourget, Michelle Hestbek-Møller, Amelia Jiménez-Sánchez, Jack Junchi Xu, Veronika Cheplygina,
- Abstract summary: We challenge the capacity of convolutional neural networks (CNN) to classify chest X-rays and eye fundus images.
We show that all models trained on the Pad dataset, irrespective of the masking strategy, are able to obtain an Area Under the Curve (AUC) above random.
We also reveal a possible spurious correlation in the Chaksu dataset while the performances are more aligned with the expectation of an unbiased model.
- Score: 0.9896218845636701
- License:
- Abstract: The development of larger models for medical image analysis has led to increased performance. However, it also affected our ability to explain and validate model decisions. Models can use non-relevant parts of images, also called spurious correlations or shortcuts, to obtain high performance on benchmark datasets but fail in real-world scenarios. In this work, we challenge the capacity of convolutional neural networks (CNN) to classify chest X-rays and eye fundus images while masking out clinically relevant parts of the image. We show that all models trained on the PadChest dataset, irrespective of the masking strategy, are able to obtain an Area Under the Curve (AUC) above random. Moreover, the models trained on full images obtain good performance on images without the region of interest (ROI), even superior to the one obtained on images only containing the ROI. We also reveal a possible spurious correlation in the Chaksu dataset while the performances are more aligned with the expectation of an unbiased model. We go beyond the performance analysis with the usage of the explainability method SHAP and the analysis of embeddings. We asked a radiology resident to interpret chest X-rays under different masking to complement our findings with clinical knowledge. Our code is available at https://github.com/TheoSourget/MMC_Masking and https://github.com/TheoSourget/MMC_Masking_EyeFundus
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Generative AI: A Pix2pix-GAN-Based Machine Learning Approach for Robust and Efficient Lung Segmentation [0.7614628596146602]
This study develops a deep learning framework using a Pix2pix Generative Adversarial Network (GAN) to segment pulmonary abnormalities from CXR images.
The framework's image preprocessing and augmentation techniques were properly incorporated with a U-Net-inspired generator-discriminator architecture.
arXiv Detail & Related papers (2024-12-14T13:12:09Z) - CROCODILE: Causality aids RObustness via COntrastive DIsentangled LEarning [8.975676404678374]
We introduce our CROCODILE framework, showing how tools from causality can foster a model's robustness to domain shift.
We apply our method to multi-label lung disease classification from CXRs, utilizing over 750000 images.
arXiv Detail & Related papers (2024-08-09T09:08:06Z) - Comparative Analysis of ImageNet Pre-Trained Deep Learning Models and
DINOv2 in Medical Imaging Classification [7.205610366609243]
In this paper, we performed a glioma grading task using three clinical modalities of brain MRI data.
We compared the performance of various pre-trained deep learning models, including those based on ImageNet and DINOv2.
Our findings indicate that in our clinical dataset, DINOv2's performance was not as strong as ImageNet-based pre-trained models.
arXiv Detail & Related papers (2024-02-12T11:49:08Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Explainable and Lightweight Model for COVID-19 Detection Using Chest
Radiology Images [0.0]
Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data.
Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets.
This study provides a detailed discussion of the success and failure of the proposed model at an image level.
arXiv Detail & Related papers (2022-12-28T11:48:29Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.