論文の概要: Boundary-Guided Learning for Gene Expression Prediction in Spatial Transcriptomics
- arxiv url: http://arxiv.org/abs/2412.04072v2
- Date: Sun, 08 Dec 2024 09:03:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 11:30:36.297333
- Title: Boundary-Guided Learning for Gene Expression Prediction in Spatial Transcriptomics
- Title(参考訳): 空間転写学における遺伝子発現予測のための境界誘導学習
- Authors: Mingcheng Qu, Yuncong Wu, Donglin Di, Anyang Su, Tonghua Su, Yang Song, Lei Fan,
- Abstract要約: 本稿では,病理画像から抽出した境界情報を手がかりとして,BG-TRIPLEXというフレームワークを提案する。
我々のフレームワークはピアソン相関係数(PCC)で既存の手法を一貫して上回っている
本手法は,WSIと遺伝子発現の複雑な相互作用を理解する上で,境界機能の重要性を強調している。
- 参考スコア(独自算出の注目度): 7.763803040383128
- License:
- Abstract: Spatial transcriptomics (ST) has emerged as an advanced technology that provides spatial context to gene expression. Recently, deep learning-based methods have shown the capability to predict gene expression from WSI data using ST data. Existing approaches typically extract features from images and the neighboring regions using pretrained models, and then develop methods to fuse this information to generate the final output. However, these methods often fail to account for the cellular structure similarity, cellular density and the interactions within the microenvironment. In this paper, we propose a framework named BG-TRIPLEX, which leverages boundary information extracted from pathological images as guiding features to enhance gene expression prediction from WSIs. Specifically, our model consists of three branches: the spot, in-context and global branches. In the spot and in-context branches, boundary information, including edge and nuclei characteristics, is extracted using pretrained models. These boundary features guide the learning of cellular morphology and the characteristics of microenvironment through Multi-Head Cross-Attention. Finally, these features are integrated with global features to predict the final output. Extensive experiments were conducted on three public ST datasets. The results demonstrate that our BG-TRIPLEX consistently outperforms existing methods in terms of Pearson Correlation Coefficient (PCC). This method highlights the crucial role of boundary features in understanding the complex interactions between WSI and gene expression, offering a promising direction for future research.
- Abstract(参考訳): 空間転写学 (Spatial transcriptomics, ST) は、遺伝子発現に空間的コンテキストを提供する高度な技術として登場した。
近年,STデータを用いてWSIデータから遺伝子発現を予測する深層学習手法が提案されている。
既存のアプローチは通常、事前訓練されたモデルを用いて画像や近隣領域から特徴を抽出し、その情報を融合して最終的な出力を生成する方法を開発する。
しかし、これらの手法は、しばしば細胞構造の類似性、細胞密度、微小環境内の相互作用を説明できない。
本稿では,病理画像から抽出した境界情報を利用したBG-TRIPLEXというフレームワークを提案する。
具体的には,3つのブランチ – スポット,インコンテキスト,グローバルブランチ – で構成されています。
スポットおよびインコンテキスト分岐では、事前訓練されたモデルを用いてエッジおよび核特性を含む境界情報を抽出する。
これらの境界特徴は, 細胞形態の学習, マルチヘッド・クロス・アテンションによる微小環境の特徴を導くものである。
最後に、これらの機能は最終出力を予測するためにグローバル機能と統合されます。
3つのパブリックSTデータセットに対して大規模な実験を行った。
その結果,我々のBG-TRIPLEXはピアソン相関係数(PCC)において既存の手法より一貫して優れていた。
本手法は,WSIと遺伝子発現の複雑な相互作用を理解する上で,境界機能の重要性を強調し,今後の研究に期待できる方向を提供する。
関連論文リスト
- Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images [1.3124513975412255]
空間転写学(spatial transcriptomics, ST)は、空間的文脈を保ちながら、転写産物全体の遺伝子発現プロファイリングを可能にする。
現在の空間クラスタリング法では、高解像度の組織像と遺伝子発現データを完全に統合することができない。
本稿では、遺伝子発現データと組織像の特徴を融合した、新しいコントラスト学習に基づく深層学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T00:32:24Z) - Accurate Spatial Gene Expression Prediction by integrating Multi-resolution features [0.0]
TRIPLEXは全スライド画像(WSI)から空間的遺伝子発現を予測するための新しいディープラーニングフレームワーク
3つのパブリックSTデータセットを用いて行ったベンチマーク研究により、TRIPLEXはMean Squared Error(MSE)、Mean Absolute Error(MAE)、Pearson correlation Coefficient(PCC)において、現在の最先端モデルよりも優れていることが示された。
このモデルの予測は、がんの診断と治療の進歩におけるTRIPLEXのポテンシャルを裏付ける、基底真理遺伝子発現プロファイルや腫瘍アノテーションと密接に一致している。
論文 参考訳(メタデータ) (2024-03-12T12:25:38Z) - FGBERT: Function-Driven Pre-trained Gene Language Model for Metagenomics [35.47381119898764]
タンパク質をベースとした遺伝子表現をコンテキスト認識および構造関連トークン化剤として導入する。
MGMとTEM-CLは1億のメダゲノミクス配列を事前訓練した新しいメダゲノミクス言語モデルであるNAMEを構成する。
論文 参考訳(メタデータ) (2024-02-24T13:13:17Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - SEPAL: Spatial Gene Expression Prediction from Local Graphs [1.4523812806185954]
視覚組織の外観から遺伝子プロファイルを予測する新しいモデルであるSEPALを提案する。
本手法は, 平均表現に対する相対差を直接観察することにより, 問題の生物学的バイアスを生かしている。
そこで本研究では,転写学における現在のベストプラクティスに従うことにより,タスクをより適切に定義することを目的とした新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2023-09-02T23:24:02Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - Exemplar Guided Deep Neural Network for Spatial Transcriptomics Analysis
of Gene Expression Prediction [9.192169460752805]
本稿では,組織スライド画像の各ウィンドウから直接,遺伝子発現を高精度かつ効率的に予測するExemplar Guided Network(EGN)を提案する。
我々のEGNフレームワークは,(1)教師なし検索のための表現空間を構成する抽出器,(2)入力ウィンドウの表現を段階的に抽出する視覚変換器(ViT)バックボーン,(3)中間の例を用いて中間のViT表現を適応的に修正するExemplar Bridging(EB)ブロックの3つの主要コンポーネントで構成されている。
論文 参考訳(メタデータ) (2022-10-30T02:22:20Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learningは、目に見えないクラスから見えないクラスに意味的な知識を移すことで、目に見えないクラスと見えないクラスの両方から画像を認識することを目的としている。
生成モデルの利点を生かして、見学したクラスから学んだ知識に基づいて、現実的な見知らぬサンプルを幻覚させることは、有望な解決策である。
本研究では,複数の条件付きアフィン結合層からなるフローベース生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-05T04:04:37Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Artificial Text Detection via Examining the Topology of Attention Maps [58.46367297712477]
トポロジカルデータ分析(TDA)に基づく3種類の解釈可能なトポロジカル特徴を提案する。
BERTモデルから派生した特徴が3つの共通データセットにおいて、カウントベースとニューラルベースベースラインを最大10%上回っていることを実証的に示す。
特徴の探索解析は表面に対する感度と構文的性質を明らかにしている。
論文 参考訳(メタデータ) (2021-09-10T12:13:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。