論文の概要: Spatially Gene Expression Prediction using Dual-Scale Contrastive Learning
- arxiv url: http://arxiv.org/abs/2506.23827v1
- Date: Mon, 30 Jun 2025 13:18:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:54.071391
- Title: Spatially Gene Expression Prediction using Dual-Scale Contrastive Learning
- Title(参考訳): Dual-Scale Contrastive Learning を用いた空間的遺伝子発現予測
- Authors: Mingcheng Qu, Yuncong Wu, Donglin Di, Yue Gao, Tonghua Su, Yang Song, Lei Fan,
- Abstract要約: NH2STは、空間的コンテキストと、遺伝子発現予測のための病理と遺伝子モダリティの両方を統合している。
我々のモデルは既存の手法を一貫して上回り、PCCメトリクスの20%以上を達成しています。
- 参考スコア(独自算出の注目度): 12.35331063443348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial transcriptomics (ST) provides crucial insights into tissue micro-environments, but is limited to its high cost and complexity. As an alternative, predicting gene expression from pathology whole slide images (WSI) is gaining increasing attention. However, existing methods typically rely on single patches or a single pathology modality, neglecting the complex spatial and molecular interactions between target and neighboring information (e.g., gene co-expression). This leads to a failure in establishing connections among adjacent regions and capturing intricate cross-modal relationships. To address these issues, we propose NH2ST, a framework that integrates spatial context and both pathology and gene modalities for gene expression prediction. Our model comprises a query branch and a neighbor branch to process paired target patch and gene data and their neighboring regions, where cross-attention and contrastive learning are employed to capture intrinsic associations and ensure alignments between pathology and gene expression. Extensive experiments on six datasets demonstrate that our model consistently outperforms existing methods, achieving over 20% in PCC metrics. Codes are available at https://github.com/MCPathology/NH2ST
- Abstract(参考訳): 空間転写学(ST)は、組織微小環境に関する重要な知見を提供するが、そのコストと複雑さに制限される。
代替として、病理画像全体(WSI)から遺伝子発現を予測することが注目されている。
しかし、既存の方法は通常、単一のパッチや単一の病理のモダリティに依存し、ターゲット情報と隣接する情報(例えば遺伝子共発現)の間の複雑な空間的および分子的相互作用を無視している。
これにより、隣接する領域間の接続を確立することができず、複雑な相互関係を捉えることに失敗する。
これらの問題に対処するために,空間的文脈と病理と遺伝子モダリティを統合化して遺伝子発現予測を行うフレームワークであるNH2STを提案する。
本モデルでは、クエリーブランチと隣のブランチから、ペア化されたターゲットパッチと遺伝子データと、その隣のリージョンを処理し、クロスアテンションとコントラスト学習を用いて、本質的な関連を捕捉し、病理と遺伝子発現の整合性を確保する。
6つのデータセットに対する大規模な実験により、我々のモデルは既存の手法を一貫して上回り、PCCメトリクスの20%以上を達成しています。
コードはhttps://github.com/MCPathology/NH2STで公開されている。
関連論文リスト
- MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
病理組織学と転写学は、腫瘍学の基本的なモダリティであり、疾患の形態学的および分子的側面を包含している。
モーダルアライメントと保持を両立させる新しいマルチモーダル表現学習法であるMIRRORを提案する。
がんの亜型化と生存分析のためのTCGAコホートに関する広範囲な評価は,MIRRORの優れた性能を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-03-01T07:02:30Z) - Boundary-Guided Learning for Gene Expression Prediction in Spatial Transcriptomics [7.763803040383128]
本稿では,病理画像から抽出した境界情報を手がかりとして,BG-TRIPLEXというフレームワークを提案する。
我々のフレームワークはピアソン相関係数(PCC)で既存の手法を一貫して上回っている
本手法は,WSIと遺伝子発現の複雑な相互作用を理解する上で,境界機能の重要性を強調している。
論文 参考訳(メタデータ) (2024-12-05T11:09:11Z) - MERGE: Multi-faceted Hierarchical Graph-based GNN for Gene Expression Prediction from Whole Slide Histopathology Images [6.717786190771243]
MERGE(Multifaceted hiErarchical gRaph for Gene Expressions)を導入し、階層グラフ構築戦略とグラフニューラルネットワーク(GNN)を組み合わせて、スライド画像全体の遺伝子発現予測を改善する。
組織像パッチを空間的特徴と形態的特徴の両方に基づいてクラスタリングすることにより,GNN学習における遠隔組織間の相互作用を促進する。
さらに,STデータ中のアーティファクトを緩和するために必要な異なるデータ平滑化技術の評価を行った。
論文 参考訳(メタデータ) (2024-12-03T17:32:05Z) - Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images [1.3124513975412255]
空間転写学(spatial transcriptomics, ST)は、空間的文脈を保ちながら、転写産物全体の遺伝子発現プロファイリングを可能にする。
現在の空間クラスタリング法では、高解像度の組織像と遺伝子発現データを完全に統合することができない。
本稿では、遺伝子発現データと組織像の特徴を融合した、新しいコントラスト学習に基づく深層学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T00:32:24Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。