Reducing Tool Hallucination via Reliability Alignment
- URL: http://arxiv.org/abs/2412.04141v2
- Date: Thu, 27 Feb 2025 04:43:54 GMT
- Title: Reducing Tool Hallucination via Reliability Alignment
- Authors: Hongshen Xu, Zichen Zhu, Lei Pan, Zihan Wang, Su Zhu, Da Ma, Ruisheng Cao, Lu Chen, Kai Yu,
- Abstract summary: Large Language Models (LLMs) have expanded their capabilities beyond language generation to interact with external tools, enabling automation and real-world applications.<n>Tool hallucinations, where models either select inappropriate tools or misuse them, pose significant challenges, leading to erroneous task execution, increased computational costs, and reduced system reliability.<n>We introduce RelyToolBench, which integrates specialized test cases and novel metrics to assess hallucination-aware task success and efficiency.<n>Finally, we propose Relign, a reliability alignment framework that expands the tool-use action space to include indecisive actions, allowing LLMs to defer tool use, seek clarification, or adjust tool selection
- Score: 31.761771794788462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have expanded their capabilities beyond language generation to interact with external tools, enabling automation and real-world applications. However, tool hallucinations, where models either select inappropriate tools or misuse them, pose significant challenges, leading to erroneous task execution, increased computational costs, and reduced system reliability. To systematically address this issue, we define and categorize tool hallucinations into two main types, tool selection hallucination and tool usage hallucination. To evaluate and mitigate these issues, we introduce RelyToolBench, which integrates specialized test cases and novel metrics to assess hallucination-aware task success and efficiency. Finally, we propose Relign, a reliability alignment framework that expands the tool-use action space to include indecisive actions, allowing LLMs to defer tool use, seek clarification, or adjust tool selection dynamically. Through extensive experiments, we demonstrate that Relign significantly reduces tool hallucinations, improves task reliability, and enhances the efficiency of LLM tool interactions.
Related papers
- Alignment for Efficient Tool Calling of Large Language Models [34.748897353548756]
Large language models (LLMs) can integrate external tools, enhancing their task performance by expanding their knowledge boundaries.
However, relying on tools often introduces tradeoffs between performance, speed, and cost.
This paper addresses the challenge of aligning LLMs with their knowledge boundaries to make more intelligent decisions about tool invocation.
arXiv Detail & Related papers (2025-03-09T17:55:49Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.
MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.
Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
This paper focuses on bridging the comprehension gap between Large Language Models and external tools.
We propose a novel framework, DRAFT, aimed at Dynamically refining tool documentation.
Extensive experiments on multiple datasets demonstrate that DRAFT's iterative, feedback-based refinement significantly ameliorates documentation quality.
arXiv Detail & Related papers (2024-10-10T17:58:44Z) - Learning Evolving Tools for Large Language Models [44.25796648300785]
Tool learning enables large language models (LLMs) to interact with external tools and APIs.
Existing research primarily focuses on static environments and overlooks this issue.
We propose ToolEVO, a novel framework designed to enhance the adaptive and reflective capabilities of LLMs against tool variability.
arXiv Detail & Related papers (2024-10-09T07:14:45Z) - Learning to Ask: When LLMs Meet Unclear Instruction [49.256630152684764]
Large language models (LLMs) can leverage external tools for addressing a range of tasks unattainable through language skills alone.
We evaluate the performance of LLMs tool-use under imperfect instructions, analyze the error patterns, and build a challenging tool-use benchmark called Noisy ToolBench.
We propose a novel framework, Ask-when-Needed (AwN), which prompts LLMs to ask questions to users whenever they encounter obstacles due to unclear instructions.
arXiv Detail & Related papers (2024-08-31T23:06:12Z) - Enhancing Tool Retrieval with Iterative Feedback from Large Language Models [9.588592185027455]
Large language models (LLMs) can effectively handle a certain amount of tools through in-context learning or fine-tuning.
In real-world scenarios, the number of tools is typically extensive and irregularly updated, emphasizing the necessity for a dedicated tool retrieval component.
We propose to enhance tool retrieval with iterative feedback from the large language model.
arXiv Detail & Related papers (2024-06-25T11:12:01Z) - Tool Learning in the Wild: Empowering Language Models as Automatic Tool Agents [56.822238860147024]
Augmenting large language models with external tools has emerged as a promising approach to extend their utility.
Previous methods manually parse tool documentation and create in-context demonstrations, transforming tools into structured formats for LLMs to use in their step-by-step reasoning.
We propose AutoTools, a framework that enables LLMs to automate the tool-use workflow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
Existing large language models (LLMs) only reach a correctness rate in the range of 30% to 60%.
We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE)
STE orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory.
arXiv Detail & Related papers (2024-03-07T18:50:51Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraTool is a novel benchmark designed to improve and evaluate Large Language Models' ability in tool utilization.
It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving.
A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage.
arXiv Detail & Related papers (2024-01-30T16:52:56Z) - Don't Fine-Tune, Decode: Syntax Error-Free Tool Use via Constrained Decoding [11.51687663492722]
Large language models (LLMs) excel at many tasks but often fail to use external tools due to complicated and unfamiliar syntax constraints.
We propose TOOLDEC, a decoding algorithm using finite state machines to force LLMs to follow tool syntax.
Experiments show that TOOLDEC eliminates all syntax errors, achieving significantly better performance on various base models and benchmarks.
arXiv Detail & Related papers (2023-10-10T23:37:53Z) - Large Language Models as Tool Makers [85.00361145117293]
We introduce a closed-loop framework, referred to as LLMs A s Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving.
Our approach consists of two phases: 1) tool making: an LLM acts as the tool maker that crafts tools for a set of tasks. 2) tool using: another LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving.
arXiv Detail & Related papers (2023-05-26T17:50:11Z) - Making Language Models Better Tool Learners with Execution Feedback [36.30542737293863]
Tools serve as pivotal interfaces that enable humans to understand and reshape the environment.
Existing tool learning methodologies induce large language models to utilize tools indiscriminately.
We propose Tool leaRning wIth exeCution fEedback (TRICE), a two-stage end-to-end framework that enables the model to continually learn through feedback derived from tool execution.
arXiv Detail & Related papers (2023-05-22T14:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.