論文の概要: Joint Explainability-Performance Optimization With Surrogate Models for AI-Driven Edge Services
- arxiv url: http://arxiv.org/abs/2503.07784v1
- Date: Mon, 10 Mar 2025 19:04:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:24.477067
- Title: Joint Explainability-Performance Optimization With Surrogate Models for AI-Driven Edge Services
- Title(参考訳): AI駆動エッジサービスのためのサロゲートモデルによる説明可能性とパフォーマンスの最適化
- Authors: Foivos Charalampakos, Thomas Tsouparopoulos, Iordanis Koutsopoulos,
- Abstract要約: 本稿では,複雑なAIモデルの予測精度と代理モデルによる近似とのバランスについて検討する。
我々は,多目的最適化(MOO)に基づく新しいアルゴリズムを導入し,複雑なモデルの予測誤差と,その出力とサロゲートの誤差を同時に最小化する。
- 参考スコア(独自算出の注目度): 3.8688731303365533
- License:
- Abstract: Explainable AI is a crucial component for edge services, as it ensures reliable decision making based on complex AI models. Surrogate models are a prominent approach of XAI where human-interpretable models, such as a linear regression model, are trained to approximate a complex (black-box) model's predictions. This paper delves into the balance between the predictive accuracy of complex AI models and their approximation by surrogate ones, advocating that both these models benefit from being learned simultaneously. We derive a joint (bi-level) training scheme for both models and we introduce a new algorithm based on multi-objective optimization (MOO) to simultaneously minimize both the complex model's prediction error and the error between its outputs and those of the surrogate. Our approach leads to improvements that exceed 99% in the approximation of the black-box model through the surrogate one, as measured by the metric of Fidelity, for a compromise of less than 3% absolute reduction in the black-box model's predictive accuracy, compared to single-task and multi-task learning baselines. By improving Fidelity, we can derive more trustworthy explanations of the complex model's outcomes from the surrogate, enabling reliable AI applications for intelligent services at the network edge.
- Abstract(参考訳): 複雑なAIモデルに基づいた信頼性の高い意思決定を保証するため、説明可能なAIはエッジサービスにとって重要なコンポーネントである。
代理モデルは、線形回帰モデルのような人間の解釈可能なモデルを、複雑な(ブラックボックス)モデルの予測を近似するように訓練するXAIの顕著なアプローチである。
本稿では、複雑なAIモデルの予測精度と、それらの近似を代用することでバランスを保ち、これらのモデルが同時に学習されることの恩恵を主張する。
両モデルの連立(双レベル)トレーニングスキームを導出し,多目的最適化(MOO)に基づく新しいアルゴリズムを導入し,複雑なモデルの予測誤差と,その出力とサロゲートの誤差を同時に最小化する。
提案手法は,ブラックボックスモデルの予測精度を,シングルタスクやマルチタスク学習ベースラインと比較して3%未満の絶対精度で低下させるため,サロゲートモデルによるブラックボックスモデルの近似において99%を超える改善をもたらす。
Fidelityを改善することで、ネットワークエッジにおけるインテリジェントなサービスに対する信頼性の高いAIアプリケーションを可能にするサロゲートから、複雑なモデルの結果について、より信頼できる説明を得ることができます。
関連論文リスト
- Linear Discriminant Analysis in Credit Scoring: A Transparent Hybrid Model Approach [9.88281854509076]
特徴量削減手法として線形判別分析 (LDA) を実装し, モデルの複雑さの軽減を図る。
我々のハイブリッドモデルであるXG-DNNは、99.45%の精度と99%のF1スコアでLDAを上回りました。
モデル決定を解釈するために、LIME (local) と Morris Sensitivity Analysis (global) という2つの異なる説明可能なAI技術を適用した。
論文 参考訳(メタデータ) (2024-12-05T14:21:18Z) - Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
マルチフィデリティ機械学習手法は、少ないリソース集約型高フィデリティデータと、豊富なが精度の低い低フィデリティデータを統合する。
低次元領域と高次元領域にまたがる問題に対する実用的多面性戦略を提案する。
論文 参考訳(メタデータ) (2024-07-21T10:40:50Z) - Characterizing Disparity Between Edge Models and High-Accuracy Base Models for Vision Tasks [5.081175754775484]
XDELTAは、高精度ベースモデルと計算効率が良いが低精度エッジモデルの違いを説明する、説明可能な新しいAIツールである。
我々は、XDELTAのモデル不一致を説明する能力をテストするための総合的な評価を行い、120万以上の画像と24のモデルを使用し、6人の参加者による実世界の展開を評価する。
論文 参考訳(メタデータ) (2024-07-13T22:05:58Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
本稿では,最小限の精度で説明可能性を向上させる手法を提案する。
我々は,AI技術を利用してノードを推定する新しい手法を開発した。
我々の研究は、統計的方法論が説明可能なAIを前進させる上で重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-16T14:43:01Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - BODAME: Bilevel Optimization for Defense Against Model Extraction [10.877450596327407]
私たちは、サービスプロバイダのアタッカーを最も推測する前提の下でモデル抽出を防ぐために、逆の設定を検討します。
真のモデルの予測を用いてサロゲートモデルを定式化する。
勾配降下に基づくアルゴリズムを用いて学習されるより複雑なモデルに対して,トラクタブル変換とアルゴリズムを与える。
論文 参考訳(メタデータ) (2021-03-11T17:08:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。