A purified input-output pseudomode model for structured open quantum systems
- URL: http://arxiv.org/abs/2412.04264v1
- Date: Thu, 05 Dec 2024 15:47:10 GMT
- Title: A purified input-output pseudomode model for structured open quantum systems
- Authors: Pengfei Liang, Neill Lambert, Si Luo, Lingzhen Guo, Mauro Cirio,
- Abstract summary: We present a model consisting of purified auxiliary bosonic modes to describe, alongside properties of the system, the dynamics of environmental observables for bosonic baths prepared in non-Gaussian initial states.
We numerically exemplify this method by simulating non-Markovian multi-photon transfer processes on a coupled cavity waveguide system in the large time delay regime.
- Score: 0.8901227918730564
- License:
- Abstract: A full understanding of open quantum systems requires the characterization of both system and environmental properties. However, the complexity of the environmental statistics in the presence of strong system-bath hybridization and long memory effects usually prevents effective non-perturbative methods from going beyond the analysis of the reduced system dynamics. Here we present a model consisting of purified auxiliary bosonic modes to describe, alongside properties of the system, the dynamics of environmental observables for bosonic baths prepared in non-Gaussian initial states. We numerically exemplify this method by simulating non-Markovian multi-photon transfer processes on a coupled cavity waveguide system in the large time delay regime.
Related papers
- Non-Hermitian Pseudomodes for Strongly Coupled Open Quantum Systems: Unravelings, Correlations and Thermodynamics [0.0]
Pseudomode framework provides an exact description of the dynamics of an open quantum system coupled to a non-Markovian environment.
We show that our approach decreases the number of pseudomodes that are required to model, for example, underdamped environments at finite temperature.
arXiv Detail & Related papers (2024-01-22T10:41:43Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Pseudomode description of general open quantum system dynamics:
non-perturbative master equation for the spin-boson model [0.0]
We outline a non-perturbative approach for simulating the behavior of open quantum systems interacting with a bosonic environment.
Our framework can be used as a powerful and versatile tool for analyzing non-Markovian open system dynamics.
arXiv Detail & Related papers (2021-08-12T13:49:22Z) - Unveiling non-Markovian spacetime signalling in open quantum systems
with long-range tensor network dynamics [0.0]
We use a Matrix Product State representation of the quantum state of a system and its environment to keep track of the bath explicitly.
We predict a non-Markovian dynamics where long-range couplings induce correlations into the environment.
The environment dynamics can be naturally extracted from our method and shine a light on long time feedback effects that are responsible for the observed non-Markovian recurrences in the eigen-populations of the system.
arXiv Detail & Related papers (2021-07-23T13:28:08Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Sampling asymmetric open quantum systems for artificial neural networks [77.34726150561087]
We present a hybrid sampling strategy which takes asymmetric properties explicitly into account, achieving fast convergence times and high scalability for asymmetric open systems.
We highlight the universal applicability of artificial neural networks, underlining the universal applicability of neural networks.
arXiv Detail & Related papers (2020-12-20T18:25:29Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - A discrete memory-kernel for multi-time correlations in non-Markovian
quantum processes [0.0]
We show that the transfer-tensor method can be extended to processes which include multiple interrogations.
Our approach exploits the process-tensor description of open quantum processes to represent and propagate the dynamics.
arXiv Detail & Related papers (2020-07-07T07:00:34Z) - An inverse-system method for identification of damping rate functions in
non-Markovian quantum systems [2.7068170693404197]
We present an inverse-system method to identify damping rate functions which describe non-Markovian environments.
We show that identifiability for the damping rate functions corresponds to the invertibility of the system.
The effectiveness of our method is shown in examples of an atom and three-spin-chain non-Markovian systems.
arXiv Detail & Related papers (2020-03-19T07:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.