論文の概要: Targeted Hard Sample Synthesis Based on Estimated Pose and Occlusion Error for Improved Object Pose Estimation
- arxiv url: http://arxiv.org/abs/2412.04279v2
- Date: Fri, 13 Dec 2024 16:59:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:00:27.910586
- Title: Targeted Hard Sample Synthesis Based on Estimated Pose and Occlusion Error for Improved Object Pose Estimation
- Title(参考訳): 推定ポッドとオクルージョン誤差に基づく目標ハードサンプル合成によるオブジェクトポッド推定の精度向上
- Authors: Alan Li, Angela P. Schoellig,
- Abstract要約: モデルに依存しない新しいハードサンプル合成法を提案する。
本研究では,最先端ポーズ推定モデルを用いて,複数のROBIデータセットオブジェクトに対して最大20%の精度で検出率を向上することを示す。
- 参考スコア(独自算出の注目度): 9.637714330461037
- License:
- Abstract: 6D Object pose estimation is a fundamental component in robotics enabling efficient interaction with the environment. It is particularly challenging in bin-picking applications, where objects may be textureless and in difficult poses, and occlusion between objects of the same type may cause confusion even in well-trained models. We propose a novel method of hard example synthesis that is model-agnostic, using existing simulators and the modeling of pose error in both the camera-to-object viewsphere and occlusion space. Through evaluation of the model performance with respect to the distribution of object poses and occlusions, we discover regions of high error and generate realistic training samples to specifically target these regions. With our training approach, we demonstrate an improvement in correct detection rate of up to 20% across several ROBI-dataset objects using state-of-the-art pose estimation models.
- Abstract(参考訳): 6Dオブジェクトのポーズ推定は、環境との効率的な相互作用を可能にするロボティクスの基本的な構成要素である。
特にビンピッキングでは、オブジェクトはテクスチャレスであり、ポーズが難しい場合があり、同じタイプのオブジェクト間の閉塞は、十分に訓練されたモデルでも混乱を引き起こす可能性がある。
本稿では,既存のシミュレータを用いて,カメラ・オブジェクト・ビュースフィアとオクルージョン空間の両方におけるポーズ誤差をモデル化し,モデルに依存しない新しいハード・サンプル合成法を提案する。
オブジェクトのポーズやオクルージョンの分布に関するモデル性能の評価を通じて、高い誤差の領域を発見し、これらの領域を特に対象とする現実的なトレーニングサンプルを生成する。
トレーニングアプローチでは、最先端ポーズ推定モデルを用いて、複数のROBIデータセットオブジェクトに対して最大20%の正確な検出率の改善を示す。
関連論文リスト
- iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
コンピュータビジョンにおける6次元カメラのポーズ推定問題に対処するため,iComMaという手法を提案する。
3次元ガウススプラッティング(3DGS)の反転による高精度カメラポーズ推定法を提案する。
論文 参考訳(メタデータ) (2023-12-14T15:31:33Z) - Towards Robust and Expressive Whole-body Human Pose and Shape Estimation [51.457517178632756]
全体のポーズと形状の推定は、単眼画像から人体全体の異なる振る舞いを共同で予測することを目的としている。
既存の手法では、既存のシナリオの複雑さの下で、しばしば劣化したパフォーマンスを示す。
全身のポーズと形状推定の堅牢性を高める新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-14T08:17:42Z) - FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPoseは、6Dオブジェクトのポーズ推定と追跡のための統合基盤モデルである。
我々のアプローチは、微調整なしで、テスト時に新しいオブジェクトに即座に適用できる。
論文 参考訳(メタデータ) (2023-12-13T18:28:09Z) - GS-Pose: Category-Level Object Pose Estimation via Geometric and
Semantic Correspondence [5.500735640045456]
カテゴリーレベルのポーズ推定は、コンピュータビジョンやロボット工学における多くの潜在的な応用において難しい課題である。
本稿では,事前学習した基礎モデルから得られる幾何学的特徴と意味的特徴の両方を活用することを提案する。
これは、セマンティックな特徴がオブジェクトのテクスチャや外観に対して堅牢であるため、以前のメソッドよりもトレーニングするデータを大幅に少なくする。
論文 参考訳(メタデータ) (2023-11-23T02:35:38Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPoseは、トレーニング中に見えない新しいオブジェクトの6Dポーズを推定する方法である。
本稿では,新しいオブジェクトに適用可能なR&Compare戦略に基づく6次元ポーズリファインダを提案する。
第2に,合成レンダリングと同一物体の観察画像間のポーズ誤差をリファインダで補正できるか否かを分類するために訓練されたネットワークを利用する,粗いポーズ推定のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-13T19:30:03Z) - RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization [46.144194562841435]
本稿では、オブジェクトポーズ改善のためのリカレントニューラルネットワーク(RNN)に基づくフレームワークを提案する。
この問題は、推定対応フィールドに基づいて非線形最小二乗問題として定式化される。
各イテレーションにおいて、対応フィールド推定とポーズ精錬を代替して行い、正確なオブジェクトポーズを復元する。
論文 参考訳(メタデータ) (2022-03-24T06:24:55Z) - 6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark [17.493403705281008]
本稿では,ロボット操作研究を中心に,既知の物体の6-DoFポーズ推定のための新しいデータセットを提案する。
我々は、おもちゃの食料品の3Dスキャンされたテクスチャモデルと、難解で散らかったシーンにおけるオブジェクトのRGBD画像を提供する。
半自動RGBD-to-modelテクスチャ対応を用いて、画像は数ミリ以内の精度で実証された地上の真実のポーズで注釈付けされる。
また,ADD-Hと呼ばれる新しいポーズ評価尺度を提案し,対象形状の対称性に頑健なハンガリー代入アルゴリズムについて,その明示的な列挙を必要とせず提案する。
論文 参考訳(メタデータ) (2022-03-11T01:19:04Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
本稿では、勾配に基づくフィッティング法とパラメトリックニューラルネットワーク合成モジュールを組み合わせる。
画像合成ネットワークは、ポーズ設定空間を効率的に分散するように設計されている。
本研究では,2次元画像のみから高精度に物体の向きを復元できることを実験的に示す。
論文 参考訳(メタデータ) (2020-08-18T20:30:47Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
大規模インスタディオデータセットの監視を用いて開発された人間のポーズ推定モデルの一般化可能性については疑問が残る。
本稿では,2対あるいは2対の弱い監督者によって抑制されない,新しいキネマティック構造保存型非教師付き3次元ポーズ推定フレームワークを提案する。
提案モデルでは,前方運動学,カメラ投影,空間マップ変換という3つの連続的な微分可能変換を用いる。
論文 参考訳(メタデータ) (2020-06-24T23:56:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。