Distributionally Robust Performative Prediction
- URL: http://arxiv.org/abs/2412.04346v2
- Date: Fri, 07 Feb 2025 20:14:28 GMT
- Title: Distributionally Robust Performative Prediction
- Authors: Songkai Xue, Yuekai Sun,
- Abstract summary: We introduce a novel framework of distributionally robust performative prediction and study a new solution concept termed as distributionally robust performative optimum (O)
We show provable guarantees for DRPO as a robust approximation to the true PO when the nominal distribution map is different from the actual one.
Results demonstrate that DRPO offers potential advantages over traditional PO approach when the distribution map is misspecified at either micro- or macro-level.
- Score: 25.580721293862467
- License:
- Abstract: Performative prediction aims to model scenarios where predictive outcomes subsequently influence the very systems they target. The pursuit of a performative optimum (PO) -- minimizing performative risk -- is generally reliant on modeling of the distribution map, which characterizes how a deployed ML model alters the data distribution. Unfortunately, inevitable misspecification of the distribution map can lead to a poor approximation of the true PO. To address this issue, we introduce a novel framework of distributionally robust performative prediction and study a new solution concept termed as distributionally robust performative optimum (DRPO). We show provable guarantees for DRPO as a robust approximation to the true PO when the nominal distribution map is different from the actual one. Moreover, distributionally robust performative prediction can be reformulated as an augmented performative prediction problem, enabling efficient optimization. The experimental results demonstrate that DRPO offers potential advantages over traditional PO approach when the distribution map is misspecified at either micro- or macro-level.
Related papers
- Robust Conformal Prediction Using Privileged Information [17.886554223172517]
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data.
Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption.
arXiv Detail & Related papers (2024-06-08T08:56:47Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
We propose a new approach for propagating stable probability distributions through neural networks.
Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity.
arXiv Detail & Related papers (2024-02-13T09:40:19Z) - End-to-End Trajectory Distribution Prediction Based on Occupancy Grid
Maps [29.67295706224478]
In this paper, we aim to forecast a future trajectory distribution of a moving agent in the real world, given the social scene images and historical trajectories.
We learn the distribution with symmetric cross-entropy using occupancy grid maps as an explicit and scene-compliant approximation to the ground-truth distribution.
In experiments, our method achieves state-of-the-art performance on the Stanford Drone dataset and Intersection Drone dataset.
arXiv Detail & Related papers (2022-03-31T09:24:32Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
Trarimiy prediction is confronted with the dilemma to capture the multi-modal nature of future dynamics.
We present a distribution discrimination (DisDis) method to predict personalized motion patterns.
Our method can be integrated with existing multi-modal predictive models as a plug-and-play module.
arXiv Detail & Related papers (2021-07-29T17:42:12Z) - An Imprecise SHAP as a Tool for Explaining the Class Probability
Distributions under Limited Training Data [5.8010446129208155]
An imprecise SHAP is proposed for cases when the class probability distributions are imprecise and represented by sets of distributions.
The first idea behind the imprecise SHAP is a new approach for computing the marginal contribution of a feature.
The second idea is an attempt to consider a general approach to calculating and reducing interval-valued Shapley values.
arXiv Detail & Related papers (2021-06-16T20:30:26Z) - Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers [1.6114012813668934]
The paper presents a novel Importance Sampling (IS) scheme for estimating distribution of performance measures modeled with a rich set of tools such as linear programs, integer linear programs, piecewise linear/quadratic objectives, feature maps specified with deep neural networks, etc.
arXiv Detail & Related papers (2021-02-14T03:37:22Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.