Boosting quantum annealing performance through direct polynomial unconstrained binary optimization
- URL: http://arxiv.org/abs/2412.04398v2
- Date: Thu, 09 Jan 2025 18:58:23 GMT
- Title: Boosting quantum annealing performance through direct polynomial unconstrained binary optimization
- Authors: Sebastian Nagies, Kevin T. Geier, Javed Akram, Dimitrios Bantounas, Michael Johanning, Philipp Hauke,
- Abstract summary: Many optimization problems are more naturally formulated in terms of unconstrained binary optimization functions of higher order.
We show that the PUBO formulation can bring considerable savings in terms of required number of qubits.
Our findings show a promising path to improving the resource efficiency and sweeping speed of quantum annealing.
- Score: 0.0
- License:
- Abstract: Quantum annealing aims at solving optimization problems of practical relevance using quantum computing hardware. Problems of interest are typically formulated in terms of quadratic unconstrained binary optimization (QUBO) Hamiltonians. However, many optimization problems are much more naturally formulated in terms of polynomial unconstrained binary optimization (PUBO) functions of higher order. As we show with various problem examples, leveraging the PUBO formulation can bring considerable savings in terms of required number of qubits. Moreover, in numerical benchmarks for the paradigmatic 3-SAT problem, we find scenarios where the scaling of the minimal gap during the optimization sweep differs significantly, suggesting the possibility of an exponentially faster annealing time when using the PUBO as compared to the QUBO formulation. This advantage persists even when considering the overhead in implementing the higher-order interactions necessary for PUBO cost Hamiltonians. As an interesting side effect, the analysis on minimum energy gaps of different 3-SAT instance generators reveals different degrees of hardness, which will be of interest also for classical benchmark calculations. Our findings show a promising path to improving the resource efficiency and sweeping speed of quantum annealing, important prerequisites when aiming at solving larger optimization problems with relevance to industry.
Related papers
- Gaussian boson sampling for binary optimization [0.0]
We propose to use a parametrized Gaussian Boson Sampler (GBS) with threshold detectors to address binary optimization problems.
Numerical experiments on 3-SAT and Graphing problems show significant performance gains over random guessing.
arXiv Detail & Related papers (2024-12-19T12:12:22Z) - Fast Numerical Solver of Ising Optimization Problems via Pruning and Domain Selection [4.460518115427853]
We propose a fast and efficient solver for the Ising optimization problems.
Our solver can be an order of magnitude faster than the classical solver, and at least two times faster than the quantum-inspired annealers.
arXiv Detail & Related papers (2023-12-10T09:43:15Z) - Challenges and Opportunities in Quantum Optimization [14.7608536260003]
Recent advances in quantum computers are demonstrating the ability to solve problems at a scale beyond brute force classical simulation.
Across computer science and physics, there are different approaches for major optimization problems.
arXiv Detail & Related papers (2023-12-04T19:00:44Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Evidence that PUBO outperforms QUBO when solving continuous optimization
problems with the QAOA [4.670374869377859]
A core step in solving optimization problems with quantum algorithms is the problem formulation.
Recent studies show that many problems can be solved more efficiently in their native Polynomial Unconstrained Optimization forms.
Our evaluation on suitable benchmark functions, shows that PUBO formulations generally yield better results, while requiring less qubits.
arXiv Detail & Related papers (2023-05-05T09:37:48Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.