Distributed Variational Quantum Algorithm with Many-qubit for Optimization Challenges
- URL: http://arxiv.org/abs/2503.00221v1
- Date: Fri, 28 Feb 2025 22:13:23 GMT
- Title: Distributed Variational Quantum Algorithm with Many-qubit for Optimization Challenges
- Authors: Seongmin Kim, In-Saeng Suh,
- Abstract summary: Existing quantum algorithms struggle with scalability and accuracy due to excessive reliance on entanglement.<n>We propose variational quantum optimization algorithm (VQOA), which leverages many-qubit (MQ) operations in an ansatz solely employing quantum superposition.<n>We also introduce distributed VQOA, which integrates high-performance computing with quantum computing to achieve superior performance across MQ systems and classical nodes.
- Score: 0.25782420501870296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimization problems are critical across various domains, yet existing quantum algorithms, despite their great potential, struggle with scalability and accuracy due to excessive reliance on entanglement. To address these limitations, we propose variational quantum optimization algorithm (VQOA), which leverages many-qubit (MQ) operations in an ansatz solely employing quantum superposition, completely avoiding entanglement. This ansatz significantly reduces circuit complexity, enhances noise robustness, mitigates Barren Plateau issues, and enables efficient partitioning for highly complex large-scale optimization. Furthermore, we introduce distributed VQOA (DVQOA), which integrates high-performance computing with quantum computing to achieve superior performance across MQ systems and classical nodes. These features enable a significant acceleration of material optimization tasks (e.g., metamaterial design), achieving more than 50$\times$ speedup compared to state-of-the-art optimization algorithms. Additionally, DVQOA efficiently solves quantum chemistry problems and $\textit{N}$-ary $(N \geq 2)$ optimization problems involving higher-order interactions. These advantages establish DVQOA as a highly promising and versatile solver for real-world problems, demonstrating the practical utility of the quantum-classical approach.
Related papers
- Distributed Quantum Approximate Optimization Algorithm on a Quantum-Centric Supercomputing Architecture [1.953969470387522]
Quantum approximate optimization algorithm (QAOA) has shown promise in solving optimization problems by providing quantum speedup on gate-based quantum computing systems.
However, QAOA faces challenges for high-dimensional problems due to the large number of qubits required and the complexity of deep circuits.
We present a distributed QAOA (DQAOA) which decomposes a large computational workload into smaller tasks that require fewer qubits and shallower circuits.
arXiv Detail & Related papers (2024-07-29T17:42:25Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Solving Combinatorial Optimization Problems with a Block Encoding Quantum Optimizer [0.0]
Block ENcoding Quantum (BEQO) is a hybrid quantum solver that uses block encoding to represent the cost function.
Our findings confirm that BENQO performs significantly better than QAOA and competes with VQE across a variety of performance metrics.
arXiv Detail & Related papers (2024-04-22T10:10:29Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Classically-Boosted Quantum Optimization Algorithm [0.0]
We explore a natural approach to leveraging existing classical techniques to enhance quantum optimization.
Specifically, we run a classical algorithm to find an approximate solution and then use a quantum circuit to search its "neighborhood" for higher-quality solutions.
We demonstrate the applications of CBQOA to Max 3SAT and Max Bisection, and provide empirical evidence that it outperforms previous approaches on these problems.
arXiv Detail & Related papers (2022-03-25T23:36:14Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.